Do you want to publish a course? Click here

All Conformally Flat Einstein--Gauss--Bonnet static Metrics

78   0   0.0 ( 0 )
 Added by Ayan Banerjee
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

It is known that the standard Schwarzschild interior metric is conformally flat and generates a constant density sphere in any spacetime dimension in Einstein and Einstein--Gauss--Bonnet gravity. This motivates the questions: In EGB does the conformal flatness criterion yield the Schwarzschild metric? Does the assumption of constant density generate the Schwarzschild interior spacetime? The answer to both questions turn out in the negative in general. In the case of the constant density sphere, a generalised Schwarzschild metric emerges. When we invoke the conformal flatness condition the Schwarschild interior solution is obtained as one solution and another metric which does not yield a constant density hypersphere in EGB theory is found. For the latter solution one of the gravitational metrics is obtained explicitly while the other is determined up to quadratures in 5 and 6 dimensions. The physical properties of these new solutions are studied with the use of numerical methods and a parameter space is located for which both models display pleasing physical behaviour.



rate research

Read More

61 - S. Brian Edgar 1996
The complete class of conformally flat, pure radiation metrics is given, generalising the metric recently given by Wils.
In this brief report, we investigate the existence of 4-dimensional static spherically symmetric black holes (BHs) in the Einstein-complex-scalar-Gauss-Bonnet (EcsGB) gravity with an arbitrary potential $V(phi)$ and a coupling $f(phi)$ between the scalar field $phi$ and the Gauss-Bonnet (GB) term. We find that static regular BH solutions with complex scalar hairs do not exist. This conclusion does not depend on the coupling between the GB term and the scalar field, nor on the scalar potential $V(phi)$ and the presence of a cosmological constant $Lambda$ (which can be either positive or negative), as longer as the scalar field remains complex and is regular across the horizon.
We discuss the cosmological evolution of a braneworld in five dimensional Gauss-Bonnet gravity. Our discussion allows the fifth (bulk) dimension to be space-like as well as time-like. The resulting equations of motion have the form of a cubic equation in the (H^2,(rho+sigma)^2) plane, where sigma is the brane tension and rho is the matter density. This allows us to conduct a comprehensive pictorial analysis of cosmological evolution for the Gauss-Bonnet brane. The many interesting properties of this braneworld include the possibility of accelerated expansion at late times. For a finite region in parameter space the accelerated expansion can be phantom-like so that w < -1. At late times, this branch approaches de Sitter space (w = -1) and avoids the big-rip singularities usually present in phantom models. For a time-like extra dimension the Gauss-Bonnet brane can bounce and avoid the initial singularity.
We present results from a numerical study of spherical gravitational collapse in shift symmetric Einstein dilaton Gauss-Bonnet (EdGB) gravity. This modified gravity theory has a single coupling parameter that when zero reduces to general relativity (GR) minimally coupled to a massless scalar field. We first show results from the weak EdGB coupling limit, where we obtain solutions that smoothly approach those of the Einstein-Klein-Gordon system of GR. Here, in the strong field case, though our code does not utilize horizon penetrating coordinates, we nevertheless find tentative evidence that approaching black hole formation the EdGB modifications cause the growth of scalar field hair, consistent with known static black hole solutions in EdGB gravity. For the strong EdGB coupling regime, in a companion paper we first showed results that even in the weak field (i.e. far from black hole formation), the EdGB equations are of mixed type: evolution of the initially hyperbolic system of partial differential equations lead to formation of a region where their character changes to elliptic. Here, we present more details about this regime. In particular, we show that an effective energy density based on the Misner-Sharp mass is negative near these elliptic regions, and similarly the null convergence condition is violated then.
The current trend concerning dense matter physics at sufficiently high densities and low temperatures is expected to behave as a degenerate Fermi gas of quarks forming Cooper pairs, namely a color superconductor, in the core of compact objects. In this context, we study the anisotropy of quark stars (QSs) assuming the internal composition to be comprised of homogeneous, charge neutral 3-flavor interacting quark matter with $mathcal{O}(m_s^4)$ corrections. Using the equation of state (EoS) with the Tolmann-Oppenheimer-Volkoff (TOV) structure equations, we perform numerical calculation for quark stars and determine the maximum mass-radius relation in the context of $4D$ Einstein-Gauss-Bonnet (EGB) gravity. In particular, we consider the effects of Gauss-Bonnet (GB) coupling constant on the diagrams related to mass-radius $(M-R)$ relation and the mass-central mass density $(M-rho_c)$ relation of QSs. We pay particular attention to the influence of the anisotropy in the equilibrium and stability of strange stars. We also study the other properties of QSs related to compactness and binding energy. Interestingly, our result provides circumstantial evidence in favor of super-massive pulsars in $4D$ EGB gravity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا