Do you want to publish a course? Click here

Spectral and temporal properties of RX J0520.5-6932 (LXP 8.04) during a type-I outburst

105   0   0.0 ( 0 )
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We observed RX J0520.5-6932 in the X-rays and studied the optical light curve of its counterpart to verify it as a Be/X-ray binary. We performed an XMM-Newton anticipated target of opportunity observation in January 2013 during an X-ray outburst of the source in order to search for pulsations and derive its spectral properties. We monitored the source with Swift to follow the evolution of the outburst and to look for further outbursts to verify the regular pattern seen in the optical light curve with a period of ~24.4 d. The XMM-Newton EPIC light curves show coherent X-ray pulsations with a period of 8.035331(15) s (1 sigma). The X-ray spectrum can be modelled by an absorbed power law with photon index of ~0.8, an additional black-body component with temperature of ~0.25 keV and an Fe K line. Phase-resolved X-ray spectroscopy reveals that the spectrum varies with pulse phase. We confirm the identification of the optical counterpart within the error circle of XMM-Newton at an angular distance of ~0.8 arcsec, which is an O9Ve star with known Halpha emission. By analyzing the combined data from three OGLE phases we derived an optical period of 24.43 d.The X-ray pulsations and long-term variability, as well as the properties of the optical counterpart, confirm that RX J0520.5-6932 is a Be/X-ray binary pulsar in the Large Magellanic Cloud. Based on the X-ray monitoring of the source we conclude that the event in January 2013 was a moderately bright type-I X-ray outburst, with a peak luminosity of 1.79e36 erg/s.



rate research

Read More

We present spectral and timing analysis of NuSTAR observations of RX J0520.5$-$6932 in the 3-79 keV band collected during its outburst in January 2014. The target was observed on two epochs and we report the detection of a cyclotron resonant scattering feature with central energies of $E_mathrm{CRSF} = 31.3_{-0.7}^{+0.8}$ keV and $31.5_{-0.6}^{+0.7}$ keV during the two observations, respectively, corresponding to a magnetic field of $B approx 2 times10^{12}$ G. The 3-79 keV luminosity of the system during the two epochs assuming a nominal distance of 50 kpc was $3.667pm0.007times 10^{38},mathrm{erg,s^{-1}}$ and $3.983pm0.007times10^{38},mathrm{erg,s^{-1}}$. Both values are much higher than the critical luminosity of $approx1.5times10^{37},mathrm{erg,s^{-1}}$ above which a radiation dominated shock front may be expected. This adds a new object to the sparse set of three systems that have a cyclotron line observed at luminosities in excess of $10^{38},mathrm{erg,s^{-1}}$. A broad ($sigmaapprox0.45$ keV) Fe emission line is observed in the spectrum at a central energy of $6.58_{-0.05}^{+0.05}$ keV in both epochs. The pulse profile of the pulsar was observed to be highly asymmetric with a sharply rising and slowly falling profile of the primary peak. We also observed minor variations in the cyclotron line energy and width as a function of the rotation phase.% As in observations of other cyclotron absorption line sources, there is a small ($Deltaphilesssim0.1$) phase difference between the peak of the cyclotron energy variation and the peak of the flux variation.
287 - Sachindra Naik 2013
We present results from a study of broadband timing and spectral properties of EXO 2030+375 using a Suzaku observation. Pulsations with a period of 41.41 s and strong energy dependent pulse profiles were clearly detected up to ~100 keV. Narrow dips are seen in the profiles up to ~70 keV. Presence of prominent dips at several phases in the profiles up to such high energy ranges were not seen before. At higher energies, these dips gradually disappeared and the profile appeared single-peaked. The 1.0-200.0 keV broad-band spectrum is found to be well described by a partial covering high energy cut-off power-law model. Several low energy emission lines are also detected in the pulsar spectrum. We fitted the spectrum using neutral as well as partially ionized absorbers along with above continuum model yielding similar parameter values. The partial covering with partially ionized absorber resulted into marginally better fit. The spectral fitting did not require any cyclotron feature in the best fit model. To investigate the changes in spectral parameters at dips, we carried out pulse-phase-resolved spectroscopy. During the dips, the value of additional column density was estimated to be high compared to other pulse phases. While using partially ionized absorber, the value of ionization parameter is also higher at the dips. This may be the reason for the presence of dips up to higher energies. No other spectral parameters show any systematic variation with pulse phases of the pulsar.
We study transient Galatic black hole candidate MAXI~J1836-194 during its 2011 outburst using RXTE/PCA archival data. 2.5-25~keV spectra are fitted with Two Component Advective Flow (TCAF) model fits file as an additive table local model in XSPEC. From TCAF model spectral fits, physical parameters such as Keplerian disk rate, sub-Keplerian halo rate, shock location and compression ratio are extracted directly for better understanding of accretion processes around the BHC during this outburst. Low frequency quasi-periodic oscillation (QPO) are observed sporadically during the entire epoch of the outburst, with a general trend of increasing frequency during rising and decreasing frequency during declining phases of the outburst, as in other transient BHCs. The nature of the variation of the accretion rate ratio (ratio of halo and disk rates) and QPOs (if observed), allows us to properly classify entire epoch of the outburst into following two spectral state, such as hard (HS), hard-intermediate (HIMS). These states are observed in the sequence of HS (Ris.) $rightarrow$ HIMS (Ris.) $rightarrow$ HIMS (Dec.) $rightarrow$ HS (Dec.). This outburst of MAXI~J1836-194 could be termed as `failed outburst, since no observation of soft (SS) and soft-intermediate (SIMS) spectral state are found during the entire outburst.
We report on an X-ray observation of the Be X-ray Binary Pulsar RX J0059.2-7138, performed by XMM-Newton in March 2014. The 19 ks long observation was carried out about three months after the discovery of the latest outburst from this Small Magellanic Cloud transient, when the source luminosity was Lx ~ 10$^{38}$ erg/s. A spin period of P=2.762383(5) s was derived, corresponding to an average spin-up of $dot{P}_{mathrm{spin}} = -(1.27pm0.01)times10^{-12}$ s $s^{-1}$ from the only previous period measurement, obtained more than 20 years earlier. The time-averaged continuum spectrum (0.2-12 keV) consisted of a hard power-law (photon index ~0.44) with an exponential cut-off at a phase-dependent energy (20-50 keV) plus a significant soft excess below about 0.5 keV. In addition, several features were observed in the spectrum: an emission line at 6.6 keV from highly ionized iron, a broad feature at 0.9-1 keV likely due to a blend of Fe L-shell lines, and narrow emission and absorption lines consistent with transitions in highly ionized oxygen, nitrogen and iron visible in the high resolution RGS data (0.4-2.1 keV). Given the different ionization stages of the narrow line components, indicative of photoionization from the luminous X-ray pulsar, we argue that the soft excess in RX J0059.2-7138 is produced by reprocessing of the pulsar emission in the inner regions of the accretion disc.
84 - A. Sanna , F. Pintore , E. Bozzo 2016
We report on the spectral and timing properties of the accreting millisecond X-ray pulsar IGR J00291+5934 observed by XMM-Newton and NuSTAR during its 2015 outburst. The source is in a hard state dominated at high energies by a comptonization of soft photons ($sim0.9$ keV) by an electron population with kT$_esim30$ keV, and at lower energies by a blackbody component with kT$sim0.5$ keV. A moderately broad, neutral Fe emission line and four narrow absorption lines are also found. By investigating the pulse phase evolution, we derived the best-fitting orbital solution for the 2015 outburst. Comparing the updated ephemeris with those of the previous outbursts, we set a $3sigma$ confidence level interval $-6.6times 10^{-13}$ s/s $< dot{P}_{orb} < 6.5 times 10^{-13}$ s/s on the orbital period derivative. Moreover, we investigated the pulse profile dependence on energy finding a peculiar behaviour of the pulse fractional amplitude and lags as a function of energy. We performed a phase-resolved spectroscopy showing that the blackbody component tracks remarkably well the pulse-profile, indicating that this component resides at the neutron star surface (hot-spot).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا