Do you want to publish a course? Click here

Dynamics of a particle confined in a two-dimensional dilating and deforming domain

82   0   0.0 ( 0 )
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Some recent results concerning a particle confined in a one-dimensional box with moving walls are briefly reviewed. By exploiting the same techniques used for the 1D problem, we investigate the behavior of a quantum particle confined in a two-dimensional box (a 2D billiard) whose walls are moving, by recasting the relevant mathematical problem with moving boundaries in the form of a problem with fixed boundaries and time-dependent Hamiltonian. Changes of the shape of the box are shown to be important, as it clearly emerges from the comparison between the pantographic, case (same shape of the box through all the process) and the case with deformation.

rate research

Read More

We study the quantum dynamics of a charged particle in a two-dimensional lattice, subject to constant and homogeneous electric and magnetic fields. We find that different regimes characterize these motions, depending on a combination of conditions, corresponding to weak and strong electric field intensities, rational or irrational directions of the electric field with respect to the lattice, and small or large values of the magnetic (Peierls) phase.
Semiflexible polymers characterized by the contour length $L$ and persistent length $ell_p$ confined in a spatial region $D$ have been described as a series of ``{em spherical blobs} and ``{em deflecting lines} by de Gennes and Odjik for $ell_p < D$ and $ell_p gg D$ respectively. Recently new intermediate regimes ({em extended de Gennes} and {em Gauss-de Gennes}) have been investigated by Tree {em et al.} [Phys. Rev. Lett. {bf 110}, 208103 (2013)]. In this letter we derive scaling relations to characterize these transitions in terms of universal scaled fluctuations in $d$-dimension as a function of $L,ell_p$, and $D$, and show that the Gauss-de Gennes regime is absent and extended de Gennes regime is vanishingly small for polymers confined in a 2D strip. We validate our claim by extensive Brownian dynamics (BD) simulation which also reveals that the prefactor $A$ used to describe the chain extension in the Odjik limit is independent of physical dimension $d$ and is the same as previously found by Yang {em et al.}[Y. Yang, T. W. Burkhardt, G. Gompper, Phys. Rev. E {bf 76}, 011804 (2007)]. Our studies are relevant for optical maps of DNA stretched inside a nano-strip.
Multi-dimensional quantum walks can exhibit highly non-trivial topological structure, providing a powerful tool for simulating quantum information and transport systems. We present a flexible implementation of a 2D optical quantum walk on a lattice, demonstrating a scalable quantum walk on a non-trivial graph structure. We realized a coherent quantum walk over 12 steps and 169 positions using an optical fiber network. With our broad spectrum of quantum coins we were able to simulate the creation of entanglement in bipartite systems with conditioned interactions. Introducing dynamic control allowed for the investigation of effects such as strong non-linearities or two-particle scattering. Our results illustrate the potential of quantum walks as a route for simulating and understanding complex quantum systems.
We study the decoherence effects originating from state flipping and depolarization for two-dimensional discrete-time quantum walks using four-state and two-state particles. By quantifying the quantum correlations between the particle and position degree of freedom and between the two spatial ($x-y$) degrees of freedom using measurement induced disturbance (MID), we show that the two schemes using a two-state particle are more robust against decoherence than the Grover walk, which uses a four-state particle. We also show that the symmetries which hold for two-state quantum walks breakdown for the Grover walk, adding to the various other advantages of using two-state particles over four-state particles.
We demonstrate Floquet engineering in a basic yet scalable 2D architecture of individually trapped and controlled ions. Local parametric modulations of detuned trapping potentials steer the strength of long-range inter-ion couplings and the related Peierls phase of the motional state. In our proof-of-principle, we initialize large coherent states and tune modulation parameters to control trajectories, directions and interferences of the phonon flow. Our findings open a new pathway for future Floquet-based trapped-ion quantum simulators targeting correlated topological phenomena and dynamical gauge fields.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا