Do you want to publish a course? Click here

Heisenberg Picture Approach to the Stability of Quantum Markov Systems

115   0   0.0 ( 0 )
 Added by Yu Pan
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Quantum Markovian systems, modeled as unitary dilations in the quantum stochastic calculus of Hudson and Parthasarathy, have become standard in current quantum technological applications. This paper investigates the stability theory of such systems. Lyapunov-type conditions in the Heisenberg picture are derived in order to stabilize the evolution of system operators as well as the underlying dynamics of the quantum states. In particular, using the quantum Markov semigroup associated with this quantum stochastic differential equation, we derive sufficient conditions for the existence and stability of a unique and faithful invariant quantum state. Furthermore, this paper proves the quantum invariance principle, which extends the LaSalle invariance principle to quantum systems in the Heisenberg picture. These results are formulated in terms of algebraic constraints suitable for engineering quantum systems that are used in coherent feedback networks.



rate research

Read More

The main motivation of this article is to derive sufficient conditions for dynamical stability of periodically driven quantum systems described by a Hamiltonian H(t), i.e., conditions under which it holds sup_{t in R} | (psi(t),H(t) psi(t)) |<infty where psi(t) denotes a trajectory at time t of the quantum system under consideration. We start from an analysis of the domain of the quasi-energy operator. Next we show, under certain assumptions, that if the spectrum of the monodromy operator U(T,0) is pure point then there exists a dense subspace of initial conditions for which the mean value of energy is uniformly bounded in the course of time. Further we show that if the propagator admits a differentiable Floquet decomposition then || H(t) psi(t) || is bounded in time for any initial condition psi(0), and one employs the quantum KAM algorithm to prove the existence of this type of decomposition for a fairly large class of H(t). In addition, we derive bounds uniform in time on transition probabilities between different energy levels, and we also propose an extension of this approach to the case of a higher order of differentiability of the Floquet decomposition. The procedure is demonstrated on a solvable example of the periodically time-dependent harmonic oscillator.
128 - Yu Pan , Zibo Miao , Nina H. Amini 2015
Quantum control could be implemented by varying the system Hamiltonian. According to adiabatic theorem, a slowly changing Hamiltonian can approximately keep the system at the ground state during the evolution if the initial state is a ground state. In this paper we consider this process as an interpolation between the initial and final Hamiltonians. We use the mean value of a single operator to measure the distance between the final state and the ideal ground state. This measure could be taken as the error of adiabatic approximation. We prove under certain conditions, this error can be precisely estimated for an arbitrarily given interpolating function. This error estimation could be used as guideline to induce adiabatic evolution. According to our calculation, the adiabatic approximation error is not proportional to the average speed of the variation of the system Hamiltonian and the inverse of the energy gaps in many cases. In particular, we apply this analysis to an example on which the applicability of the adiabatic theorem is questionable.
From the perspective of probability, the stability of growing network is studied in the present paper. Using the DMS model as an example, we establish a relation between the growing network and Markov process. Based on the concept and technique of first-passage probability in Markov theory, we provide a rigorous proof for existence of the steady-state degree distribution, mathematically re-deriving the exact formula of the distribution. The approach based on Markov chain theory is universal and performs well in a large class of growing networks.
134 - A. Ibort , V.I. Manko , G. Marmo 2013
The existing relation between the tomographic description of quantum states and the convolution algebra of certain discrete groupoids represented on Hilbert spaces will be discussed. The realizations of groupoid algebras based on qudit, photon-number (Fock) states and symplectic tomography quantizers and dequantizers will be constructed. Conditions for identifying the convolution product of groupoid functions and the star--product arising from a quantization--dequantization scheme will be given. A tomographic approach to construct quasi--distributions out of suitable immersions of groupoids into Hilbert spaces will be formulated and, finally, intertwining kernels for such generalized symplectic tomograms will be evaluated explicitly.
We introduce quantum Markov states (QMS) in a general tree graph $G= (V, E)$, extending the Cayley trees case. We investigate the Markov property w.r.t. the finer structure of the considered tree. The main result of this paper concerns the diagonalizability of a locally faithful QMS $varphi$ on a UHF-algebra $mathcal A_V$ over the considered tree by means of a suitable conditional expectation into a maximal abelian subalgebra. Namely, we prove the existence of a Umegaki conditional expectation $mathfrak E : mathcal A_V to mathcal D_V$ such that $$varphi = varphi_{lceil mathcal D_V}circ mathfrak E.$$ Moreover, we clarify the Markovian structure of the associated classical measure on the spectrum of the diagonal algebra $mathcal D_V$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا