Do you want to publish a course? Click here

Markov chain-based stability analysis of growing networks

317   0   0.0 ( 0 )
 Added by Jinying Tong
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

From the perspective of probability, the stability of growing network is studied in the present paper. Using the DMS model as an example, we establish a relation between the growing network and Markov process. Based on the concept and technique of first-passage probability in Markov theory, we provide a rigorous proof for existence of the steady-state degree distribution, mathematically re-deriving the exact formula of the distribution. The approach based on Markov chain theory is universal and performs well in a large class of growing networks.



rate research

Read More

In this paper, we abstract a kind of stochastic processes from evolving processes of growing networks, this process is called growing network Markov chains. Thus the existence and the formulas of degree distribution are transformed to the corresponding problems of growing network Markov chains. First we investigate the growing network Markov chains, and obtain the condition in which the steady degree distribution exists and get its exact formulas. Then we apply it to various growing networks. With this method, we get a rigorous, exact and unified solution of the steady degree distribution for growing networks.
130 - Yu Pan , Hadis Amini , Zibo Miao 2014
Quantum Markovian systems, modeled as unitary dilations in the quantum stochastic calculus of Hudson and Parthasarathy, have become standard in current quantum technological applications. This paper investigates the stability theory of such systems. Lyapunov-type conditions in the Heisenberg picture are derived in order to stabilize the evolution of system operators as well as the underlying dynamics of the quantum states. In particular, using the quantum Markov semigroup associated with this quantum stochastic differential equation, we derive sufficient conditions for the existence and stability of a unique and faithful invariant quantum state. Furthermore, this paper proves the quantum invariance principle, which extends the LaSalle invariance principle to quantum systems in the Heisenberg picture. These results are formulated in terms of algebraic constraints suitable for engineering quantum systems that are used in coherent feedback networks.
Filtering theory gives an explicit models for the flow of information and thereby quantifies the rates of change of information supplied to and dissipated from the filters memory. Here we extend the analysis of Mitter and Newton from linear Gaussian models to general nonlinear filters involving Markov diffusions.The rates of entropy production are now generally the average squared-field (co-metric) of various logarithmic probability densities, which may be interpreted as Fisher information associate with Gaussian perturbations (via de Bruijns identity). We show that the central connection is made through the Mayer-Wolf and Zakai Theorem for the rate of change of the mutual information between the filtered state and the observation history. In particular, we extend this Theorem to cover a Markov diffusion controlled by observations process, which may be interpreted as the filter acting as a Maxwells Daemon applying feedback to the system.
We study the stability of quantum pure states and, more generally, subspaces for stochastic dynamics that describe continuously--monitored systems. We show that the target subspace is almost surely invariant if and only if it is invariant for the average evolution, and that the same equivalence holds for the global asymptotic stability. Moreover, we prove that a strict linear Lyapunov function for the average evolution always exists, and latter can be used to derive sharp bounds on the Lyapunov exponents of the associated semigroup. Nonetheless, we also show that taking into account the measurements can lead to an improved bound on stability rate for the stochastic, non-averaged dynamics. We discuss explicit examples where the almost sure stability rate can be made arbitrary large while the average one stays constant.
Motivated by the long-time transport properties of quantum waves in weakly disordered media, the present work puts random Schrodinger operators into a new spectral perspective. Based on a stationary random version of a Floquet type fibration, we reduce the description of the quantum dynamics to a fibered family of abstract spectral perturbation problems on the underlying probability space. We state a natural resonance conjecture for these fibered operators: in contrast with periodic and quasiperiodic settings, this would entail that Bloch waves do not exist as extended states, but rather as resonant modes, and this would justify the expected exponential decay of time correlations. Although this resonance conjecture remains open, we develop new tools for spectral analysis on the probability space, and in particular we show how ideas from Malliavin calculus lead to rigorous Mourre type results: we obtain an approximate dynamical resonance result and the first spectral proof of the decay of time correlations on the kinetic timescale. This spectral approach suggests a whole new way of circumventing perturbative expansions and renormalization techniques.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا