Do you want to publish a course? Click here

Complete temporal characterization of a single photon

239   0   0.0 ( 0 )
 Added by Zhongzhong Qin
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Precise information about the temporal mode of optical states is crucial for optimizing their interaction efficiency between themselves and/or with matter in various quantum communication devices. Here we propose and experimentally demonstrate a method of determining both the real and imaginary components of a single photons temporal density matrix by measuring the autocorrelation function of the photocurrent from a balanced homodyne detector at multiple local oscillator frequencies. We test our method on single photons heralded from biphotons generated via four-wave mixing in an atomic vapor and obtain excellent agreement with theoretical predictions for several settings.



rate research

Read More

Ionization of atoms and molecules by absorption of a light pulse results in electron wavepackets carrying information on the atomic or molecular structure as well as on the dynamics of the ionization process. These wavepackets can be described as a coherent sum of waves of given angular momentum, called partial waves, each characterized by an amplitude and a phase. The complete characterization of the individual angular momentum components is experimentally challenging, requiring the analysis of the interference between partial waves both in energy and angle. Using a two-photon interferometry technique based on extreme ultraviolet attosecond and infrared femtosecond pulses, we characterize the individual partial wave components in the photoionization of the 2p shell in neon. The study of the phases of the angular momentum channels allows us to unravel the influence of short-range, correlation and centrifugal effects. This approach enables the complete reconstruction of photoionization electron wavepackets in time and space, providing insight into the photoionization dynamics.
Optical quantum states defined in temporal modes, especially non-Gaussian states like photon-number states, play an important role in quantum computing schemes. In general, the temporal-mode structures of these states are characterized by one or more complex functions called temporal-mode functions (TMFs). Although we can calculate TMF theoretically in some cases, experimental estimation of TMF is more advantageous to utilize the states with high purity. In this paper, we propose a method to estimate complex TMFs. This method can be applied not only to arbitrary single-temporal-mode non-Gaussian states but also to two-temporal-mode states containing two photons. This method is implemented by continuous-wave (CW) dual homodyne measurement and doesnt need prior information of the target states nor state reconstruction procedure. We demonstrate this method by analyzing several experimentally created non-Gaussian states.
This papers purpose is to review the results recently obtained in the Quantum Optics labs of the National Institute of Metrological Research (INRIM) in the field of single- and few-photon detectors calibration, from both the classical and quantum viewpoint. In the first part of the paper is presented the calibration of a single-photon detector with absolute methods, while in the second part we focus on photon-number-resolving detectors, discussing both the classical and quantum characterization of such devices.
Single photon detectors are important for a wide range of applications each with their own specific requirements, which makes necessary the precise characterization of detectors. Here, we present a simple and accurate methodology of characterizing dark count rate, detection efficiency, and after-pulsing in single photon detectors purely based on their counting statistics. We demonstrate our new method on a custom-made, free-running single photon detector based on an InGaAs based avalanche photo diode (APD), though the methodology presented here is applicable for any type of single photon detector.
As single-photon sources become more mature and are used more often in quantum information, communications and measurement applications, their characterization becomes more important. Single-photon-like light is often characterized by its brightness, and two quantum properties: the single-photon composition and the photon indistinguishability. While it is desirable to obtain these quantities from a single measurement, currently two or more measurements are required. Here, we simultaneously determine the brightness, the single photon purity, the indistinguishability, and the statistical distribution of Fock states to third order for a quantum light source. The measurement uses a pair of two-photon (n = 2) number-resolving detectors. n > 2 number-resolving detectors provide no additional advantage in the single-photon characterization. The new method extracts more information per experimental trial than a conventional measurement for all input states, and is particularly more e cient for statistical mixtures of photon states. Thus, using this n=2, number- resolving detector scheme will provide advantages in a variety of quantum optics measurements and systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا