No Arabic abstract
We introduce spherical T-duality, which relates pairs of the form $(P,H)$ consisting of a principal $SU(2)$-bundle $Prightarrow M$ and a 7-cocycle $H$ on $P$. Intuitively spherical T-duality exchanges $H$ with the second Chern class $c_2(P)$. Unless $dim(M)leq 4$, not all pairs admit spherical T-duals and the spherical T-duals are not always unique. Nonetheless, we prove that all spherical T-dualities induce a degree-shifting isomorphism on the 7-twisted cohomologies of the bundles and, when $dim(M)leq 7$, also their integral twisted cohomologies and, when $dim(M)leq 4$, even their 7-twisted K-theories. While spherical T-duality does not appear to relate equivalent string theories, it does provide an identification between conserved charges in certain distinct IIB supergravity and string compactifications.
T-duality acts on circle bundles by exchanging the first Chern class with the fiberwise integral of the H-flux, as we motivate using E_8 and also using S-duality. We present known and new examples including NS5-branes, nilmanifolds, Lens spaces, both circle bundles over RP^n, and the AdS^5 x S^5 to AdS^5 x CP^2 x S^1 with background H-flux of Duff, Lu and Pope. When T-duality leads to M-theory on a non-spin manifold the gravitino partition function continues to exist due to the background flux, however the known quantization condition for G_4 fails. In a more general context, we use correspondence spaces to implement isomorphisms on the twisted K-theories and twisted cohomology theories and to study the corresponding Grothendieck-Riemann-Roch theorem. Interestingly, in the case of decomposable twists, both twisted theories admit fusion products and so are naturally rings.
We investigate the Yangian symmetry of scattering amplitudes in N=4 super Yang-Mills theory and show that its formulations in twistor and momentum twistor space can be interchanged. In particular we show that the full symmetry can be thought of as the Yangian of the dual superconformal algebra, annihilating the amplitude with the MHV part factored out. The equivalence of this picture with the one where the ordinary superconformal symmetry is thought of as fundamental is an algebraic expression of T-duality. Motivated by this, we analyse some recently proposed formulas, which reproduce different contributions to amplitudes through a Grassmannian integral. We prove their Yangian invariance by directly applying the generators.
Open descendants with boundaries and crosscaps of non-trivial automorphism type are studied. We focus on the case where the bulk symmetry is broken to a Z_2 orbifold subalgebra. By requiring positivity and integrality for the open sector, we derive a unique crosscap of automorphism type g in Z_2 and a corresponding g-twisted Klein bottle for a charge conjugation invariant. As a specific example, we use T-duality to construct the descendants of the true diagonal invariant with symmetry preserving crosscaps and boundaries.
We study two aspects of fermionic T-duality: the duality in purely fermionic sigma models exploring the possible obstructions and the extension of the T-duality beyond classical approximation. We consider fermionic sigma models as coset models of supergroups divided by their maximally bosonic subgroup OSp(m|n)/SO(m) x Sp(n). Using the non-abelian T-duality and a non-conventional gauge fixing we derive their fermionic T-duals. In the second part of the paper, we prove the conformal invariance of these models at one and two loops using the Background Field Method and we check the Ward Identities.
We use newly discovered N = (2, 2) vector multiplets to clarify T-dualities for generalized Kahler geometries. Following the usual procedure, we gauge isometries of nonlinear sigma-models and introduce Lagrange multipliers that constrain the field-strengths of the gauge fields to vanish. Integrating out the Lagrange multipliers leads to the original action, whereas integrating out the vector multiplets gives the dual action. The description is given both in N = (2, 2) and N = (1, 1) superspace.