By driving a dispersively coupled qubit-resonator system, we realize an impedance-matched $Lambda$ system that has two identical radiative decay rates from the top level and interacts with a semi-infinite waveguide. It has been predicted that a photon input from the waveguide deterministically induces a Raman transition in the system and switches its electronic state. We confirm this through microwave response to a continuous probe field, observing near-perfect ($99.7%$) extinction of the reflection and highly efficient ($74%$) frequency down-conversion. These proof-of-principle results lead to deterministic quantum gates between material qubits and microwave photons and open the possibility for scalable quantum networks interconnected with waveguide photons.
Multimode cavity quantum electrodynamics ---where a two-level system interacts simultaneously with many cavity modes---provides a versatile framework for quantum information processing and quantum optics. Due to the combination of long coherence times and large interaction strengths, one of the leading experimental platforms for cavity QED involves coupling a superconducting circuit to a 3D microwave cavity. In this work, we realize a 3D multimode circuit QED system with single photon lifetimes of $2$ ms and cooperativities of $0.5-1.5times10^9$ across 9 modes of a novel seamless cavity. We demonstrate a variety of protocols for universal single-mode quantum control applicable across all cavity modes, using only a single drive line. We achieve this by developing a straightforward flute method for creating monolithic superconducting microwave cavities that reduces loss while simultaneously allowing control of the mode spectrum and mode-qubit interaction. We highlight the flexibility and ease of implementation of this technique by using it to fabricate a variety of 3D cavity geometries, providing a template for engineering multimode quantum systems with exceptionally low dissipation. This work is an important step towards realizing hardware efficient random access quantum memories and processors, and for exploring quantum many-body physics with photons.
The interaction between the electromagnetic field inside a cavity and natural or artificial atoms has played a crucial role in developing our understanding of light-matter interaction, and is central to various quantum technologies. Recently, new regimes beyond the weak and strong light-matter coupling have been explored in several settings. These regimes, where the interaction strength is comparable (ultrastrong) or even higher (deep-strong) than the transition frequencies in the system, can give rise to new physical effects and applications. At the same time, they challenge our understanding of cavity QED. When the interaction strength is so high, fundamental issues like the proper definition of subsystems and of their quantum measurements, the structure of light-matter ground states, or the analysis of time-dependent interactions are subject to ambiguities leading to even qualitatively distinct predictions. The resolution of these ambiguities is also important for understanding and designing next-generation quantum devices that will exploit the ultrastrong coupling regime. Here we discuss and provide solutions to these issues.
We report the experimental observation of high-order sideband transitions at the single-photon level in a quantum circuit system of a flux qubit ultrastrongly coupled to a coplanar waveguide resonator. With the coupling strength reaching 10% of the resonators fundamental frequency, we obtain clear signatures of higher-order red and first-order blue-sideband transitions, which are mainly due to the ultrastrong Rabi coupling. Our observation advances the understanding of ultrastrongly-coupled systems and paves the way to study high-order processes in the quantum Rabi model at the single-photon level.
We propose an experimentally accessible superconducting quantum circuit, consisting of two coplanar waveguide resonators (CWRs), to enhance the microwave squeezing via parametric down-conversion (PDC). In our scheme, the two CWRs are nonlinearly coupled through a superconducting quantum interference device embedded in one of the CWRs. This is equivalent to replacing the transmission line in a flux-driven Josephson parametric amplifier (JPA) by a CWR, which makes it possible to drive the JPA by a quantized microwave field. Owing to this design, the PDC coefficient can be considerably increased to be about tens of megahertz, satisfying the strong-coupling condition. Using the Heisenberg-Langevin approach, we numerically show the enhancement of the microwave squeezing in our scheme. In contrast to the JPA, our proposed system becomes stable around the critical point and can generate stronger transient squeezing. In addition, the strong-coupling PDC can be used to engineer the photon blockade.
A microwave lens with highly reduced reflectance, as compared to conventional dielectric lenses, is proposed. The lens is based on two-dimensional or three-dimensional transmission-line networks that can be designed to have an effective refractive index larger than one, while having almost perfect impedance matching with free space. The design principles are presented and an example lens is studied using commercial simulation software.
K. Inomata
,K. Koshino
,Z. R. Lin
.
(2014)
.
"Microwave Down-Conversion with an Impedance-Matched $Lambda$ System in Driven Circuit QED"
.
Kunihiro Inomata
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا