Do you want to publish a course? Click here

Mechanical Properties of Graphene Nanowiggles

488   0   0.0 ( 0 )
 Added by Douglas Galvao
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this work we have investigated the mechanical properties and fracture patterns of some graphene nanowiggles (GNWs). Graphene nanoribbons are finite graphene segments with a large aspect ratio, while GNWs are nonaligned periodic repetitions of graphene nanoribbons. We have carried out fully atomistic molecular dynamics simulations using a reactive force field (ReaxFF), as implemented in the LAMPPS (Large-scale Atomic/Molecular Massively Parallel Simulator) code. Our results showed that the GNW fracture patterns are strongly dependent on the nanoribbon topology and present an interesting behavior, since some narrow sheets have larger ultimate failure strain values. This can be explained by the fact that narrow nanoribbons have more angular freedom when compared to wider ones, which can create a more efficient way to accumulate and to dissipate strain/stress. We have also observed the formation of linear atomic chains (LACs) and some structural defect reconstructions during the material rupture. The reported graphene failure patterns, where zigzag/armchair edge terminated graphene structures are fractured along armchair/zigzag lines, were not observed in the GNW analyzed cases.



rate research

Read More

Since the first successful synthesis of graphene just over a decade ago, a variety of two-dimensional (2D) materials (e.g., transition metal-dichalcogenides, hexagonal boron-nitride, etc.) have been discovered. Among the many unique and attractive properties of 2D materials, mechanical properties play important roles in manufacturing, integration and performance for their potential applications. Mechanics is indispensable in the study of mechanical properties, both experimentally and theoretically. The coupling between the mechanical and other physical properties (thermal, electronic, optical) is also of great interest in exploring novel applications, where mechanics has to be combined with condensed matter physics to establish a scalable theoretical framework. Moreover, mechanical interactions between 2D materials and various substrate materials are essential for integrated device applications of 2D materials, for which the mechanics of interfaces (adhesion and friction) has to be developed for the 2D materials. Here we review recent theoretical and experimental works related to mechanics and mechanical properties of 2D materials. While graphene is the most studied 2D material to date, we expect continual growth of interest in the mechanics of other 2D materials beyond graphene.
The van der Waals interactions between two parallel graphitic nanowiggles (GNWs) are calculated using the coupled dipole method (CDM). The CDM is an efficient and accurate approach to determine such interactions explicitly by taking into account the discrete atomic structure. Our findings show that the van der Waals forces vary from attraction to repulsion as nanoribbons move along their lengths with respect to each other. This feature leads to a number of stable and unstable positions of the system during the movement process. These positions can be tuned by changing the length of GNW. Moreover, the influence of the thermal effect on the van der Waals interactions is also extensively investigated. This work would give good direction for both future theoretical and experimental studies.
284 - A. Voje , J. M. Kinaret , 2011
We study the quantum dynamics of a symmetric nanomechanical graphene resonator with degenerate flexural modes. Applying voltage pulses to two back gates, flexural vibrations of the membrane can be selectively actuated and manipulated. For graphene, nonlinear response becomes important already for amplitudes comparable to the magnitude of zero point fluctuations. We show, using analytical and numerical methods, that this allows for creation of cat-like superpositions of coherent states as well as superpositions of coherent cat-like non-product states.
Oscillators, which produce continuous periodic signals from direct current power, are central to modern communications systems, with versatile applications such as timing references and frequency modulators. However, conventional oscillators typically consist of macroscopic mechanical resonators such as quartz crystals, which require excessive off-chip space. Here we report oscillators built on micron-size, atomically-thin graphene nanomechanical resonators, whose frequencies can be electrostatically tuned by as much as 14%. The self-sustaining mechanical motion of the oscillators is generated and transduced at room temperature by simple electrical circuitry. The prototype graphene voltage controlled oscillators exhibit frequency stability and modulation bandwidth sufficient for modulation of radio-frequency carrier signals. As a demonstration, we employ a graphene oscillator as the active element for frequency modulated signal generation, and achieve efficient audio signal transmission.
We report radio frequency (rf) electrical readout of graphene mechanical resonators. The mechanical motion is actuated and detected directly by using a vector network analyzer, employing a local gate to minimize parasitic capacitance. A resist-free doubly clamped sample with resonant frequency ~ 34 MHz, quality factor ~ 10000 at 77 K, and signal-to-background ratio of over 20 dB is demonstrated. In addition to being over two orders of magnitude faster than the electrical rf mixing method, this technique paves the way for use of graphene in rf devices such as filters and oscillators.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا