Do you want to publish a course? Click here

Graphene mechanical oscillators with tunable frequency

193   0   0.0 ( 0 )
 Added by Changyao Chen
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Oscillators, which produce continuous periodic signals from direct current power, are central to modern communications systems, with versatile applications such as timing references and frequency modulators. However, conventional oscillators typically consist of macroscopic mechanical resonators such as quartz crystals, which require excessive off-chip space. Here we report oscillators built on micron-size, atomically-thin graphene nanomechanical resonators, whose frequencies can be electrostatically tuned by as much as 14%. The self-sustaining mechanical motion of the oscillators is generated and transduced at room temperature by simple electrical circuitry. The prototype graphene voltage controlled oscillators exhibit frequency stability and modulation bandwidth sufficient for modulation of radio-frequency carrier signals. As a demonstration, we employ a graphene oscillator as the active element for frequency modulated signal generation, and achieve efficient audio signal transmission.



rate research

Read More

We report radio frequency (rf) electrical readout of graphene mechanical resonators. The mechanical motion is actuated and detected directly by using a vector network analyzer, employing a local gate to minimize parasitic capacitance. A resist-free doubly clamped sample with resonant frequency ~ 34 MHz, quality factor ~ 10000 at 77 K, and signal-to-background ratio of over 20 dB is demonstrated. In addition to being over two orders of magnitude faster than the electrical rf mixing method, this technique paves the way for use of graphene in rf devices such as filters and oscillators.
Coupled nanomechanical resonators are interesting for both fundamental studies and practical applications as they offer rich and tunable oscillation dynamics. At present, the mechanical coupling in such systems is often mediated by a fixed geometry, such as a joint clamping point of the resonators or a displacement-dependent force. Here we show a graphene-integrated electromechanical system consisting of two physically separated mechanical resonators -- a comb-drive actuator and a suspended silicon beam -- that are tunably coupled by a graphene membrane. The graphene membrane, moreover, provides a sensitive electrical read-out for the two resonating systems silicon structures showing 16 different modes in the frequency range from 0.4~to 24~MHz. In addition, by pulling on the graphene membrane with an electrostatic potential applied to one of the silicon resonators, we control the mechanical coupling, quantified by the $g$-factor, from 20 kHz to 100 kHz. Our results pave the way for coupled nanoelectromechanical systems requiring controllable mechanically coupled resonators.
We assess the potential of two-terminal graphene-hBN-graphene resonant tunneling diodes as high-frequency oscillators, using self-consistent quantum transport and electrostatic simulations to determine the time-dependent response of the diodes in a resonant circuit. We quantify how the frequency and power of the current oscillations depend on the diode and circuit parameters including the doping of the graphene electrodes, device geometry, alignment of the graphene lattices, and the circuit impedances. Our results indicate that current oscillations with frequencies of up to several hundred GHz should be achievable.
We present a simple micromanipulation technique to transfer suspended graphene flakes onto any substrate and to assemble them with small localized gates into mechanical resonators. The mechanical motion of the graphene is detected using an electrical, radio-frequency (RF) reflection readout scheme where the time-varying graphene capacitor reflects a RF carrier at f=5-6 GHz producing modulation sidebands at f +/- fm. A mechanical resonance frequency up to fm=178 MHz is demonstrated. We find both hardening/softening Duffing effects on different samples, and obtain a critical amplitude of ~40 pm for the onset of nonlinearity in graphene mechanical resonators. Measurements of the quality factor of the mechanical resonance as a function of DC bias voltage Vdc indicate that dissipation due to motion-induced displacement currents in graphene electrode is important at high frequencies and large Vdc.
In the field of nanomechanics, parametric excitations are of interest since they can greatly enhance sensing capabilities and eliminate cross-talk. However, parametric excitations often rely on externally tuned springs, which limits their application to high quality factor resonators and usually does not allow excitation of multiple higher modes into parametric resonance. Here we demonstrate parametric amplification and resonance of suspended single-layer graphene membranes by an efficient opto-thermal drive that modulates the intrinsic spring constant. With a large amplitude of the optical drive, a record number of 14 mechanical modes can be brought into parametric resonance by modulating a single parameter: the pretension. In contrast to conventional mechanical resonators, it is shown that graphene membranes demonstrate an interesting combination of both strong nonlinear stiffness and nonlinear damping.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا