Do you want to publish a course? Click here

Efficient Algorithms for Maximum Likelihood Decoding in the Surface Code

124   0   0.0 ( 0 )
 Added by Sergey Bravyi
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We describe two implementations of the optimal error correction algorithm known as the maximum likelihood decoder (MLD) for the 2D surface code with a noiseless syndrome extraction. First, we show how to implement MLD exactly in time $O(n^2)$, where $n$ is the number of code qubits. Our implementation uses a reduction from MLD to simulation of matchgate quantum circuits. This reduction however requires a special noise model with independent bit-flip and phase-flip errors. Secondly, we show how to implement MLD approximately for more general noise models using matrix product states (MPS). Our implementation has running time $O(nchi^3)$ where $chi$ is a parameter that controls the approximation precision. The key step of our algorithm, borrowed from the DMRG method, is a subroutine for contracting a tensor network on the two-dimensional grid. The subroutine uses MPS with a bond dimension $chi$ to approximate the sequence of tensors arising in the course of contraction. We benchmark the MPS-based decoder against the standard minimum weight matching decoder observing a significant reduction of the logical error probability for $chige 4$.



rate research

Read More

Surface codes are among the best candidates to ensure the fault-tolerance of a quantum computer. In order to avoid the accumulation of errors during a computation, it is crucial to have at our disposal a fast decoding algorithm to quickly identify and correct errors as soon as they occur. We propose a linear-time maximum likelihood decoder for surface codes over the quantum erasure channel. This decoding algorithm for dealing with qubit loss is optimal both in terms of performance and speed.
We formulate maximum likelihood (ML) channel decoding as a quadratic unconstraint binary optimization (QUBO) and simulate the decoding by the current commercial quantum annealing machine, D-Wave 2000Q. We prepared two implementations with Ising model formulations, generated from the generator matrix and the parity-check matrix respectively. We evaluated these implementations of ML decoding for low-density parity-check (LDPC) codes, analyzing the number of spins and connections and comparing the decoding performance with belief propagation (BP) decoding and brute-force ML decoding with classical computers. The results show that these implementations are superior to BP decoding in relatively short length codes, and while the performance in the long length codes deteriorates, the implementation from the parity-check matrix formulation still works up to 1k length with fewer spins and connections than that of the generator matrix formulation due to the sparseness of parity-check matrices of LDPC.
CA-Polar codes have been selected for all control channel communications in 5G NR, but accurate, computationally feasible decoders are still subject to development. Here we report the performance of a recently proposed class of optimally precise Maximum Likelihood (ML) decoders, GRAND, that can be used with any block-code. As published theoretical results indicate that GRAND is computationally efficient for short-length, high-rate codes and 5G CA-Polar codes are in that class, here we consider GRANDs utility for decoding them. Simulation results indicate that decoding of 5G CA-Polar codes by GRAND, and a simple soft detection variant, is a practical possibility.
We study the problem of characterizing when two memoryless binary asymmetric channels, described by their transition probabilities $(p,q)$ and $(p,q)$, are equivalent from the point of view of maximum likelihood decoding (MLD) when restricted to $n$-block binary codes. This equivalence of channels induces a partition (depending on $n$) on the space of parameters $(p,q)$ into regions associated with the equivalence classes. Explicit expressions for describing these regions, their number and areas are derived. Some perspectives of applications of our results to decoding problems are also presented.
Estimating symmetric properties of a distribution, e.g. support size, coverage, entropy, distance to uniformity, are among the most fundamental problems in algorithmic statistics. While each of these properties have been studied extensively and separate optimal estimators are known for each, in striking recent work, Acharya et al. 2016 showed that there is a single estimator that is competitive for all symmetric properties. This work proved that computing the distribution that approximately maximizes emph{profile likelihood (PML)}, i.e. the probability of observed frequency of frequencies, and returning the value of the property on this distribution is sample competitive with respect to a broad class of estimators of symmetric properties. Further, they showed that even computing an approximation of the PML suffices to achieve such a universal plug-in estimator. Unfortunately, prior to this work there was no known polynomial time algorithm to compute an approximate PML and it was open to obtain a polynomial time universal plug-in estimator through the use of approximate PML. In this paper we provide a algorithm (in number of samples) that, given $n$ samples from a distribution, computes an approximate PML distribution up to a multiplicative error of $exp(n^{2/3} mathrm{poly} log(n))$ in time nearly linear in $n$. Generalizing work of Acharya et al. 2016 on the utility of approximate PML we show that our algorithm provides a nearly linear time universal plug-in estimator for all symmetric functions up to accuracy $epsilon = Omega(n^{-0.166})$. Further, we show how to extend our work to provide efficient polynomial-time algorithms for computing a $d$-dimensional generalization of PML (for constant $d$) that allows for universal plug-in estimation of symmetric relationships between distributions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا