Do you want to publish a course? Click here

Carrier-carrier scattering and negative dynamic conductivity in pumped graphene

218   0   0.0 ( 0 )
 Added by Dmitry Svintsov
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We theoretically examine the effect of carrier-carrier scattering processes (electron-hole and electron-electron) on the intraband radiation absorption and their contribution to the net dynamic conductivity in optically or electrically pumped graphene. We demonstrate that the radiation absorption assisted by the carrier-carrier scattering can be stronger than the Drude absorption due to the carrier scattering on disorder. Since the intraband absorption of radiation effectively competes with its interband amplification, this can substantially affect the conditions of the negative dynamic conductivity in the pumped graphene and, hence, the interband terahertz and infrared lasing. We find the threshold values of the frequency and quasi-Fermi energy of nonequilibrium carriers corresponding to the onset of negative dynamic conductivity. The obtained results show that the effect of carrier-carrier scattering shifts the threshold frequency of the radiation amplification in pumped graphene to higher values. In particular, the negative dynamic conductivity is attainable at the frequencies above 6 THz in graphene on SiO2 substrates at room temperature. The threshold frequency can be decreased to markedly lower values in graphene structures with high-k substrates due to screening of the carrier-carrier scattering, particularly at lower temperatures.



rate research

Read More

130 - D. Brida , A. Tomadin , C. Manzoni 2012
Graphene is emerging as a viable alternative to conventional optoelectronic, plasmonic, and nanophotonic materials. The interaction of light with carriers creates an out-of-equilibrium distribution, which relaxes on an ultrafast timescale to a hot Fermi-Dirac distribution, that subsequently cools via phonon emission. Here we combine pump-probe spectroscopy, featuring extreme temporal resolution and broad spectral coverage, with a microscopic theory based on the quantum Boltzmann equation, to investigate electron-electron collisions in graphene during the very early stages of relaxation. We identify the fundamental physical mechanisms controlling the ultrafast dynamics in graphene, in particular the significant role of ultrafast collinear scattering, enabling Auger processes, including charge multiplication, key to improving photovoltage generation and photodetectors.
194 - J. N. Heyman 2014
We investigated negative photoconductivity in graphene using ultrafast terahertz techniques. Infrared transmission was used to determine the Fermi energy, carrier density and mobility of p-type CVD graphene samples. Time-resolved terahertz photoconductivity measurements using a tunable mid-infrared pump probed these samples at photon energies between 0.35eV to 1.55eV, approximately one half to three times the Fermi energy of the samples. Although interband optical transitions in graphene are blocked for pump photon energies less than twice the Fermi energy, we observe negative photoconductivity at all pump photon energies investigated, indicating that interband excitation is not required to observe this effect. Our results are consistent with a thermalized free carrier population that cools by electron-phonon scattering, but inconsistent with models of negative photoconductivity based on population inversion.
We theoretically calculate the impurity-scattering induced resistivity of twisted bilayer graphene at low twist angles where the graphene Fermi velocity is strongly suppressed. We consider, as a function of carrier density, twist angle, and temperature, both long-ranged Coulomb scattering and short-ranged defect scattering within a Boltzmann theory relaxation time approach. For experimentally relevant disorder, impurity scattering contributes a resistivity comparable to (much larger than) the phonon scattering contribution at high (low) temperatures. Decreasing twist angle leads to larger resistivity, and in general, the resistivity increases (decreases) with increasing temperature (carrier density). Inclusion of the van Hove singularity in the theory leads to a strong increase in the resistivity at higher densities, where the chemical potential is close to a van Hove singularity, leading to an apparent density-dependent plateau type structure in the resistivity, which has been observed in recent transport experiments. We also show that the Matthissens rule is strongly violated in twisted bilayer graphene at low twist angles.
228 - E. H. Hwang , S. Das Sarma 2008
We theoretically calculate the phonon scattering limited electron mobility in extrinsic (i.e. gated or doped with a tunable and finite carrier density) 2D graphene layers as a function of temperature $(T)$ and carrier density $(n)$. We find a temperature dependent phonon-limited resistivity $rho_{ph}(T)$ to be linear in temperature for $Tagt 50 K$ with the room temperature intrinsic mobility reaching values above $10^5$ cm$^2/Vs$. We comment on the low-temperature Bloch-Gr{u}neisen behavior where $rho_{ph}(T) sim T^4$ for unscreened electron-phonon coupling.
We performed infrared transmission experiment on ion-gel gated graphene and measured carrier scattering rate g as function of carrier density n over wide range up to n=2E13 cm-2. The g exhibits a rapid decreases along with the gating followed by persistent increases on further carrier doping. This behavior of g(n) demonstrates that carrier is scattered dominantly by the two scattering mechanisms, namely, charged impurity (CI) scattering and short-range disorder (SR) scattering, with additional minor scattering from substrate phonon (SPP). We can determine the absolute strengths of all the scattering channels by fitting the g(n) data and unveils the complete n-dependent map of the scattering mechanisms g(n)=gCI(n)+gSR(n)+gSPP(n). The gCI(n) and gSR(n) are larger than those of SiO2$-gated graphene by 1.8 times, which elucidates the dual role of the ion-gel layer as a CI-scatterer and simultaneously a SR-scatterer to graphene. Additionally we show that freezing of IG at low-T (~200 K) does not cause any change to the carrier scattering.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا