Do you want to publish a course? Click here

Latent-heat and non-linear vortex liquid at the vicinity of the first-order phase transition in layered high-Tc superconductors

178   0   0.0 ( 0 )
 Added by Moira Dolz
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this work we revisit the vortex matter phase diagram in layered superconductors solving still open questions by means of AC and DC local magnetic measurements in the paradigmatic Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{8}$ compound. We show that measuring with AC magnetic techniques is mandatory in order to probe the bulk response of vortex matter, particularly at high-temperatures where surface barriers for vortex entrance dominate. From the $T_{rm FOT}$-evolution of the enthalpy and latent-heat at the transition we find that, contrary to previous reports, the nature of the dominant interlayer coupling is electromagnetic in the whole temperature range. By studying the dynamic properties of the phase located at $T gtrsim T_{rm FOT}$, we reveal the spanning in a considerable fraction of the phase diagram of a non-linear vortex phase suggesting bulk pinning might play a role even in the liquid vortex phase.



rate research

Read More

115 - I. L. Landau , H. R. Ott 2004
We present the results of a scaling analysis of isothermal magnetization M(H) curves measured in the mixed state of high-Tc superconductors in the vicinity of the established first order phase transition. The most surprising result of our analysis is that the difference between the magnetization above and below the transition may have either sign, depending on the particular chosen sample. We argue that this observation, based on M(H) data available in the literature, is inconsistent with the interpretation that the well known first order phase transition in the mixed state of high-Tc superconductors always represents the melting transition in the vortex system.
We report the direct imaging of a novel modulated flux striped domain phase in a nearly twin-free YBCO crystal. These domains arise from instabilities in the vortex structure within a narrow region of tilted magnetic fields at small angles from the in-plane direction. By comparing the experimental and theoretically derived vortex phase diagrams we infer that the stripe domains emerge from a first order phase transition of the vortex structure. The size of domains containing vortices of certain orientations is controlled by the balance between the vortex stray field energy and the positive energy of the domain boundaries. Our results confirm the existence of the kinked vortex chain phase in an anisotropic high temperature superconductor and reveal a sharp transition in the state of this phase resulting in regular vortex domains.
We calculate the energy gap (latent heat) and pressure gap between the hot and cold phases of the SU(3) gauge theory at the first order deconfining phase transition point. We perform simulations around the phase transition point with the lattice size in the temporal direction Nt=6, 8 and 12 and extrapolate the results to the continuum limit. We also investigate the spatial volume dependence. The energy density and pressure are evaluated by the derivative method with non-perturabative anisotropy coefficients. We adopt a multi-point reweighting method to determine the anisotropy coefficients. We confirm that the anisotropy coefficients approach the perturbative values as Nt increases. We find that the pressure gap vanishes at all values of Nt when the non-perturbative anisotropy coefficients are used. The spatial volume dependence in the latent heat is found to be small on large lattices. Performing extrapolation to the continuum limit, we obtain $ Delta epsilon/T^4 = 0.75 pm 0.17 $ and $ Delta (epsilon -3 p)/T^4 = 0.623 pm 0.056.$
We detect the persistence of the solidification and order-disorder first-order transition lines in the phase diagram of nanocrystalline Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{8}$ vortex matter down to a system size of less than hundred vortices. The temperature-location of the vortex solidification transition line is not altered by decreasing the sample size although there is a depletion of the entropy-jump at the transition with respect to macroscopic vortex matter. The solid order-disorder phase transition field moves upward on decreasing the system size due to the increase of the surface-to-volume ratio of vortices entailing a decrease on the average vortex binding energy.
The vortex-lattice melting transitions in two typical iron-based high-Tc superconductor $Ba(Fe_{1-x}Co_{x})_{2}As_{2}$ (122-type) and$Nd(O_{1-x}F_{x})FeAs$ (1111-type) for magnetic fields both parallel and perpendicular to the anisotropy axis are studied within the elastic theory. Using the parameters from experiments, the vortex-lattice melting lines in the H-T diagram are located systematically by various groups of Lindemann numbers. It is observed that the theoretical result for the vortex melting on $Ba(Fe_{1-x}Co_{x})_{2}As_{2}$ for parallel fields agrees well the recent experimental data. The future experimental results for the vortex melting can be compared with the present theoretical prediction by tuning reasonable Lindemann numbers.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا