Do you want to publish a course? Click here

Elastic theory for the vortex-lattice melting in iron-based high-Tc superconductors

312   0   0.0 ( 0 )
 Added by Qing-Hu Chen
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

The vortex-lattice melting transitions in two typical iron-based high-Tc superconductor $Ba(Fe_{1-x}Co_{x})_{2}As_{2}$ (122-type) and$Nd(O_{1-x}F_{x})FeAs$ (1111-type) for magnetic fields both parallel and perpendicular to the anisotropy axis are studied within the elastic theory. Using the parameters from experiments, the vortex-lattice melting lines in the H-T diagram are located systematically by various groups of Lindemann numbers. It is observed that the theoretical result for the vortex melting on $Ba(Fe_{1-x}Co_{x})_{2}As_{2}$ for parallel fields agrees well the recent experimental data. The future experimental results for the vortex melting can be compared with the present theoretical prediction by tuning reasonable Lindemann numbers.



rate research

Read More

A vortex in an s-wave superconductor with a surface Dirac cone can trap a Majorana bound state with zero energy leading to a zero-bias peak (ZBP) of tunneling conductance. The iron-based superconductor FeTe$_x$Se$_{1-x}$ is one of the material candidates hosting these Majorana vortex modes. It has been observed by recent scanning tunneling spectroscopy measurement that the fraction of vortex cores possessing ZBPs decreases with increasing magnetic field on the surface of this iron-based superconductor. We construct a three-dimensional tight-binding model simulating the physics of over a hundred Majorana vortex modes in FeTe$_x$Se$_{1-x}$ with realistic physical parameters. Our simulation shows that the Majorana hybridization and disordered vortex distribution can explain the decreasing fraction of the ZBPs observed in the experiment. Furthermore, we find the statistics of the energy peaks off zero energy in our simulation with the Majorana physics in agreement with the analyzed peak statistics in the vortex cores from the experiment. This agreement and the explanation of the decreasing ZBP fraction lead to an important indication of scalable Majorana vortex modes in the iron-based superconductor. Thus, FeTe$_x$Se$_{1-x}$ can be one promising platform possessing scalable Majorana qubits for quantum computing. In addition, we further show the interplay of the ZBP presence and the vortex locations qualitatively agrees with our additional experimental observation and predict the universal spin signature of the hybridized multiple Majorana vortex modes.
We review neutron scattering investigations of the crystal structures, magnetic structures, and spin dynamics of the iron-based RFe(As,P)O (R=La, Ce, Pr, Nd), (Ba,Sr,Ca)Fe2As2, and Fe1+x(Te-Se) systems. On cooling from room temperature all the undoped materials exhibit universal behavior, where a tetragonal-to-orthorhombic/monoclinic structural transition occurs, below which the systems become antiferromagnets. For the first two classes of materials the magnetic structure within the a-b plane consists of chains of parallel Fe spins that are coupled antiferromagnetically in the orthogonal direction, with an ordered moment typically less than one Bohr magneton. Hence these are itinerant electron magnets, with a spin structure that is consistent with Fermi-surface nesting and a very energetic spin wave bandwidth ~0.2 eV. With doping, the structural and magnetic transitions are suppressed in favor of superconductivity. Magnetic correlations are observed in the superconducting regime, with a magnetic resonance that follows the superconducting order parameter just like the cuprates. The rare-earth moments order antiferromagnetically at low T like conventional magnetic-superconductors. Pressure in CaFe2As2 transforms the system from a magnetically ordered orthorhombic material to a collapsed non-magnetic tetragonal system. Tetragonal Fe1+xTe transforms to a low T monoclinic structure at small x that changes to orthorhombic at larger x, which is accompanied by a crossover from commensurate to incommensurate magnetic order. Se doping suppresses the magnetic order.
The dynamic phase diagram of vortex lattices driven in disorder is calculated in two and three dimensions. A modified Lindemann criterion for the fluctuations of the distance of neighboring vortices is used, which unifies previous analytic approaches to the equilibrium and non-equilibrium phase transitions. The temperature shifts of the dynamic melting and decoupling transitions are found to scale inversely proportional to large driving currents. A comparison with two-dimensional simulations shows that this phenomenological approach can provide quantitative estimate for the location of these transitions.
327 - Lingyuan Kong , Hong Ding 2021
The vortex of iron-based superconductors is emerging as a promising platform for Majorana zero mode, owing to a magic integration among intrinsic vortex winding, non-trivial band topology, strong electron-electron correlations, high-Tc superconductivity and the simplification of single material. It overcomes many difficulties suffered in heterostructure-based Majorana platforms, including small topological gap, interfacial contamination, lattice imperfections, and etc. Isolated zero-bias peaks have been found in vortex of several iron-based superconductors. So far, studies from both experimental and theoretical aspects strongly indicate the realization of vortex Majorana zero mode, with a potential to be applied to topological quantum computation. By taking Fe(Te,Se) superconductor as an example, here we review original idea and research progress of Majorana zero modes in this new platform. After introducing the identifications of topological band structure and real zero modes in vortex, we summarize the physics behaviors of vortex Majorana zero modes systematically. Firstly, relying on the behavior of the zero mode wave function and evidence of quasiparticle poisoning, we analyze the mechanism of emergence of vortex Majorana zero modes. Secondly, assisted with some well-established theories, we elaborate the measurements on Majorana symmetry and topological nature of vortex Majorana zero modes. After that, we switch from quantum physics to quantum engineering, and analyze the performance of vortex Majorana zero mode under real circumstances, which may potentially benefit the exploration of practical applications in the future. This review follows the physics properties of vortex Majorana zero modes, especially emphasizes the link between phenomena and mechanisms. It provides a chance to bridge the gap between the well-established theories and the newly discovered iron home of Majoranas.
We study topological vortex phases in iron-based superconductors. Besides the previously known vortex end Majorana zero modes (MZMs) phase stemming from the existence of a three dimensional (3D) strong topological insulator state, we show that there is another topologically nontrivial phase as iron-based superconductors can be doped superconducting 3D weak topological insulators (WTIs). The vortex bound states in a superconducting 3D WTI exhibit two different types of quantum states, a robust nodal superconducting phase with pairs of bulk MZMs and a full-gap topologically nontrivial superconducting phase which has single vortex end MZM in a certain range of doping level. Moreover, we predict and summarize various topological phases in iron-based superconductors, and find that carrier doping and interlayer coupling can drive systems to have phase transitions between these different topological phases.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا