Do you want to publish a course? Click here

Superconducting performance of ex-situ SiC-doped MgB2 mono-filamentary tapes

415   0   0.0 ( 0 )
 Added by Maurizio Vignolo
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the superconducting performance of the ex-situ SiC doped MgB2 monofilamentary tapes. Polycrystalline powders of MgB2 doped with 5 and 10 wt% SiC were synthesized by conventional solid-state reaction route and characterized for their superconducting performance. It is found that superconducting parameters i.e. upper critical field (Hc2), irreversibility field (Hirr) and critical current density (Jc) are all improved significantly with SiC addition. Also it was found that relatively lower synthesis temperature (700 C) resulted in further improved superconducting parameters. As synthesized powders are used for ex-situ powder-in-tube (PIT) monofilamentary tapes and superconducting parameters are determined. Albeit the superconducting transition temperature (Tc) is decreased slightly (2K) for SiC doped tapes, the superconducting performance in terms of critical current density (Jc), being determined from both magnetization and transport measurements, is improved significantly. In particular the SiC doped and 700 {deg}C synthesized MgB2 tapes exhibited the transport Jc of nearly 10^4 A/cm2 under applied fields of as high as 7 Tesla. Further it is found that the Jc anisotropy decreases significantly for SiC doped tapes. Disorder due to substitution of C at B site being created from broken SiC and the presence of nano SiC respectively in SiC added ex-situ MgB2 tapes are responsible for decreased anisotropy and improved Jc(H) performance.



rate research

Read More

MgB2 monofilamentary nickel-sheated tapes and wires were fabricated by means of the ex-situ powder-in-tube method using either high-energy ball milled and low temperature synthesized powders. All sample were sintered at 920 C in Ar flow. The milling time and the revolution speed were tuned in order to maximize the critical current density in field (Jc): the maximum Jc value of 6 x 10e4 A/cm2 at 5 K and 4 T was obtained corresponding to the tape prepared with powders milled for 144h at 180rpm. Vorious synthesis temperature were also investigated (730-900 C) finding a best Jc value for the wire prepared with powders synthesized at 745 C. We speculate that this optimal temperature is due to the fluidifying effect of unreacted magnesium content before the sintering process which could better connect the grains.
264 - A Malagoli , M Tropeano , V Cubeda 2008
In DC and AC practical applications of MgB2 superconducting wires an important role is represented by the material sheath which has to provide, among other things, a suitable electrical and thermal stabilization. A way to obtain a large enough amount of low resistivity material in to the conductor architecture is to use it as external sheath. In this paper we study ex-situ multifilamentary MgB2 wires using oxide-dispersion-strengthened copper (GlidCop) as external sheath in order to reach a good compromise between critical current density and thermal properties. We prepared three GlidCop samples differing by the content of dispersed sub-microscopic Al2O3 particles. We characterized the superconducting and thermal properties and we showed that the good thermal conductivity together the good mechanical properties and a reasonable critical current density make of GlidCop composite wire a useful conductor for applications where high thermal conductivity is request at temperature above 30K, such as Superconducting-FCL.
Ex-situ Powder-In-Tube MgB2 tapes prepared with ball-milled, undoped powders showed a strong enhancement of the irreversibility field H*, the upper critical field Hc2 and the critical current density Jc(H) together with the suppression of the anisotropy of all of these quantities. Jc reached 104 A/cm2 at 4.2 K and 10 T, with an irreversibility field of about 14 T at 4.2 K, and Hc2 of 9 T at 25 K, high values for not-doped MgB2. The enhanced Jc and H* values are associated with significant grain refinement produced by milling of the MgB2 powder, which enhances grain boundary pinning, although at the same time also reducing the connectivity from about 12% to 8%. Although enhanced pinning and diminished connectivity are in opposition, the overall influence of ball milling on Jc is positive because the increased density of grains with a size comparable with the mean free path produces strong electron scattering that substantially increases Hc2, especially Hc2 perpendicular to the Mg and B planes.
Among the recently discovered Fe-based superconducting compounds, the (K,Ba)Fe2As2 phase is attracting large interest within the scientific community interested in conductor developments. In fact, after some years of development, critical current densities Jc of about 105 A/cm2 at fields up to more than 10 T have been obtained in powder in tube (PIT) processed wires and tapes. Here we explore the crucial points in the wire/tape fabrication by means of the ex-situ PIT method. We focus on scaling up processes which are crucial for the industrial fabrication. We analyzed the effects on the microstructure of the different heat and mechanical treatments. By an extensive microstructural analysis correlated with the transport properties we addressed the issues concerning the phase purity, the internal porosity and crack formation in the superconducting core region. Our best conductors with a filling factor of about 30 heat treated at 800 C exhibited Tc = 38 K the highest value measured in such kind of superconducting tape. The microstructure analysis shows clean and well connected grain boundaries but rather poor density: The measured Jc of about 3 x 10^4 A/cm2 in self-field is suppressed by less than a factor 7 at 7 T. Such not yet optimized Jc values can be accounted for by the reduced density while the moderate in-field suppression and a rather high n-factor confirm the high homogeneity and uniformity of these tapes.
MoSi2 doped MgB2 tapes with different doping levels were prepared through the in-situ powder-in-tube method using Fe as the sheath material. Effect of MoSi2 doping on the MgB2/Fe tapes was investigated. It is found that the highest JC value was achieved in the 2.5 at.% doped samples, more than a factor of 4 higher compared to the undoped tapes at 4.2 K, 10 T, then further increasing the doping ratio caused a reduction of JC. Moreover, all doped tapes exhibited improved magnetic field dependence of Jc. The enhancement of JC-B properties in MoSi2 doped MgB2 tapes is attributed to good grain linkage and the introduction of effective flux pining centers with the doping.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا