Do you want to publish a course? Click here

Effect of grain refinement on enhancing critical current density and upper critical field in undoped MgB2 ex-situ tapes

249   0   0.0 ( 0 )
 Added by Andrea Malagoli
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Ex-situ Powder-In-Tube MgB2 tapes prepared with ball-milled, undoped powders showed a strong enhancement of the irreversibility field H*, the upper critical field Hc2 and the critical current density Jc(H) together with the suppression of the anisotropy of all of these quantities. Jc reached 104 A/cm2 at 4.2 K and 10 T, with an irreversibility field of about 14 T at 4.2 K, and Hc2 of 9 T at 25 K, high values for not-doped MgB2. The enhanced Jc and H* values are associated with significant grain refinement produced by milling of the MgB2 powder, which enhances grain boundary pinning, although at the same time also reducing the connectivity from about 12% to 8%. Although enhanced pinning and diminished connectivity are in opposition, the overall influence of ball milling on Jc is positive because the increased density of grains with a size comparable with the mean free path produces strong electron scattering that substantially increases Hc2, especially Hc2 perpendicular to the Mg and B planes.



rate research

Read More

MgB2/Fe tapes with 2.5-15 at.% ZrB2 additions were prepared through the in situ powder-in-tube method. Compared to the pure tape, a significant improvement in the in-field critical current density Jc was observed, most notably for 10 at.% doping, while the critical temperature decreased slightly. At 4.2 K, the transport Jc for the 10 at.% doped sample increased by more than an order of magnitude than the undoped one in magnetic fields above 9 T. Nanoscale segregates or defects caused by the ZrB2 additions which act as effective flux pinning centers are proposed to be the main reason for the improved Jc field performance.
The high resistivity of many bulk and film samples of MgB2 is most readily explained by the suggestion that only a fraction of the cross-sectional area of the samples is effectively carrying current. Hence the supercurrent (Jc) in such samples will be limited by the same area factor, arising for example from porosity or from insulating oxides present at the grain boundaries. We suggest that a correlation should exist, Jc ~ 1/{Rho(300K) - Rho(50K)}, where Rho(300K) - Rho(50K) is the change in the apparent resistivity from 300 K to 50 K. We report measurements of Rho(T) and Jc for a number of films made by hybrid physical-chemical vapor deposition which demonstrate this correlation, although the reduced effective area argument alone is not sufficient. We suggest that this argument can also apply to many polycrystalline bulk and wire samples of MgB2.
A significant enhancement of Jc and Hirr in MgB2 tapes has been achieved by the in situ powder-in-tube method utilizing hollow carbon spheres (HCS) as dopants. At 4.2 K, the transport Jc for the 850C sintered samples reached 3.1x10^4, and 1.4x10^4 A/cm^2 at 10 and 12 T, respectively, and were better than those of optimal nano-SiC doped tapes. Furthermore, the Hirr for doped sample was raised up to 16.8 T at 10 K due to the carbon substitution effect. The results demonstrate that HCS is one of the most promising dopants besides nano-carbon and SiC for the enhancement of current capacity for MgB2 in high fields.
We study the effect of 100 MeV Silicon and 200 MeV Gold ion irradiation on the inter and intra grain properties of superconducting thin films of Magnesium Diboride. Substantial decrease in inter-grain connectivity is observed, depending on irradiation dose and type of ions used. We establish that modification of sigma band scattering mechanism, and consequently the upper critical field and anisotropy, depends on the size and directional properties of the extrinsic defects. Post heavy ion irradiation, the upper critical field shows enhancement at a defect density that is five orders of magnitude less compared to neutron irradiation. The critical current density however is best improved through light ion irradiation.
The effect of the quality of starting powders on the microstructure and superconducting properties of in-situ processed Fe-sheathed MgB2 tapes has been investigated. Three different types of commercial atomized spherical magnesium powder and two different purities of amorphous boron powder were employed. When using the 10-micrometre magnesium as precursor powders, the Mg reacted with boron more uniformly and quickly, thus the uniformity of the fabricated MgB2 was improved and the grain size of the MgB2 was decreased, hence significant critical current density (Jc) enhancements were achieved for MgB2 tapes. Jc at 4.2 K for MgB2 tapes made from the 10 um Mg and high purity boron powders was at least a factor of ten higher than values measured for MgB2 samples made from all other starting powders. At 20 K, 5 T, the typical Jc values of the tapes were over 1.0x10^4 A/cm^2 and were much better than those of tape samples reported recently.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا