Do you want to publish a course? Click here

A novel process to produce amorphous nano-sized B useful for MgB2 phase synthesis

149   0   0.0 ( 0 )
 Added by Maurizio Vignolo
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper we report a new synthesis route to produce boron powders characterized as being amorphous and having very fine particle size. This route has been developed to improve the performances of superconducting MgB2 powders, which can be directly synthesized from this nano-structured boron precursor by following the ex-situ or the in-situ P.I.T. method during the manufacturing of tapes, wires and cables. All the procedure steps are explained and the chemical-physical characterization of the boron powder, using x-ray diffraction (Xrd), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques, is reported. Furthermore, a comparison with commercial boron is given. Preliminary results of the magnetic and electrical characterization, such as the critical temperature (TC) and the transport critical current density (JC t), for the MgB2 tape are reported and compared with the tape prepared with commercial boron.



rate research

Read More

Very recently, the tetragonal BiOCuS was synthesized and declared as a new superconducting system with Fe-oxypnictide - related structure. Here, based on first-principle FLAPW-GGA calculations, the structural parameters, electronic bands picture, density of states and electron density distribution for BiOCuS are investigated for the first time. Our results show that, as distinct from related metallic-like FeAs systems, BiOCuS phase behaves as an ionic semiconductor with the calculated indirect band gap at about 0.48 eV. The superconductivity for BiOCuS may be achieved exclusively by doping of this phase. Our preliminary results demonstrate that as a result of hole doping, the [CuS] blocks become conducting owing to mixed Cu 3d + S 3p bands located near the Fermi level. For the hole doped BiOCuS the Fermi surface adopts a quasi-two-dimensional character, similarly to FeAs SCs.
148 - S. D. Bu 2002
We report the growth and properties of epitaxial MgB2 thin films on (0001) Al2O3 substrates. The MgB2 thin films were prepared by depositing boron films via RF magnetron sputtering, followed by a post-deposition anneal at 850C in magnesium vapor. X-ray diffraction and cross-sectional TEM reveal that the epitaxial MgB2 films are oriented with their c-axis normal to the (0001) Al2O3 substrate and a 30 degree rotation in the ab-plane with respect to the substrate. The critical temperature was found to be 35 K and the anisotropy ratio, Hc2(parallel to the film) / Hc2(pendicular to the film), about 3 at 25K. The critical current densities at 4.2 K and 20 K (at 1 T perpendicular magnetic field) are 5x10E6 A/cm2 and 1x10E6 A/cm2, respectively. The controlled growth of epitaxial MgB2 thin films opens a new avenue in both understanding superconductivity in MgB2 and technological applications.
MoSi2 doped MgB2 tapes with different doping levels were prepared through the in-situ powder-in-tube method using Fe as the sheath material. Effect of MoSi2 doping on the MgB2/Fe tapes was investigated. It is found that the highest JC value was achieved in the 2.5 at.% doped samples, more than a factor of 4 higher compared to the undoped tapes at 4.2 K, 10 T, then further increasing the doping ratio caused a reduction of JC. Moreover, all doped tapes exhibited improved magnetic field dependence of Jc. The enhancement of JC-B properties in MoSi2 doped MgB2 tapes is attributed to good grain linkage and the introduction of effective flux pining centers with the doping.
We have first succeefully synthesized the sodium cobalt oxyhydrate superconductors using KMnO4 as a de-intercalating and oxidizing agent. It is a novel route to form the superconductive phase of NaxCoO2.yH2O without resorting to the commonly used Br2/CH3CN solution. The role of the KMnO4 is to de-intercalate the Na+ from the parent compound Na0.7CoO2 and oxidize the Co ion as a result. The higher molar ratio of KMnO4 relative to the sodium content tends to remove more Na+ from the parent compound and results in a slight expansion of the c-axis in the unit cell. The superconducting transition temperature is 4.6-3.8 K for samples treated by the aqueous KMnO4 solution with the molar ratio of KMnO4 relative to the sodium content in the range of 0.3 and 2.29.
Precursor MgB2 thin films were prepared on sapphire substrates by magnetron sputtering. Influence of ex-situ annealing process on superconducting MgB2 thin films roughness is discussed. Optimized annealing process of MgB precursor thin films in vacuum results in smooth superconducting MgB2 thin films with roughness below 10 nm, critical temperature Tcon = 31 K and transition width DTc less than 1 K. Nano-bridges based on the superconducting MgB2 thin films using optical and Focused Ion Beam lithography were prepared. Critical current density jc (4.2 K) measured on 50 nm wide strip was 7.3x106 A/cm2 and no significant loss of superconducting properties was detected. Resistance vs. temperature and critical current vs. temperature characteristics were measured on these structures using standard DC four probe measurements.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا