Do you want to publish a course? Click here

Mass and magnification maps for the Hubble Space Telescope Frontier Fields clusters: implications for high redshift studies

142   0   0.0 ( 0 )
 Added by Johan Richard
 Publication date 2014
  fields Physics
and research's language is English
 Authors J.Richard




Ask ChatGPT about the research

Extending over three Hubble Space Telescope (HST) cycles, the Hubble Frontier Fields (HFF) initiative constitutes the largest commitment ever of HST time to the exploration of the distant Universe via gravitational lensing by massive galaxy clusters. We here present models of the mass distribution in the six HFF cluster lenses, derived from a joint strong- and weak-lensing analysis anchored by a total of 88 multiple-image systems identified in existing HST data. The resulting maps of the projected mass distribution and of the gravitational magnification effectively calibrate the HFF clusters as gravitational telescopes. Allowing the computation of search areas in the source plane, these maps are provided to the community to facilitate the exploitation of forthcoming HFF data for quantitative studies of the gravitationally lensed population of background galaxies. Our models of the gravitational magnification afforded by the HFF clusters allow us to quantify the lensing-induced boost in sensitivity over blank-field observations and predict that galaxies at $z>10$ and as faint as m(AB)=32 will be detectable, up to 2 magnitudes fainter than the limit of the Hubble Ultra Deep Field.



rate research

Read More

We present strong-lensing models, as well as mass and magnification maps, for the cores of the six HST Frontier Fields galaxy clusters. Our parametric lens models are constrained by the locations and redshifts of multiple image systems of lensed background galaxies. We use a combination of photometric redshifts and spectroscopic redshifts of the lensed background sources obtained by us (for Abell 2744 and Abell S1063), collected from the literature, or kindly provided by the lensing community. Using our results, we (1) compare the derived mass distribution of each cluster to its light distribution, (2) quantify the cumulative magnification power of the HFF clusters, (3) describe how our models can be used to estimate the magnification and image multiplicity of lensed background sources at all redshifts and at any position within the cluster cores, and (4) discuss systematic effects and caveats resulting from our modeling methods. We specifically investigate the effect of the use of spectroscopic and photometric redshift constraints on the uncertainties of the resulting models. We find that the photometric redshift estimates of lensed galaxies are generally in excellent agreement with spectroscopic redshifts, where available. However, the flexibility associated with relaxed redshift priors may cause the complexity of large-scale structure that is needed to account for the lensing signal to be underestimated. Our findings thus underline the importance of spectroscopic arc redshifts, or tight photometric redshift constraints, for high precision lens models. All products from our best-fit lens models (magnification, convergence, shear, deflection field) and model simulations for estimating errors are made available via the Mikulski Archive for Space Telescopes.
Measuring time delays from strongly lensed supernovae (SNe) is emerging as a novel and independent tool for estimating the Hubble constant $(H_0)$. This is very important given the recent discord in the value of $H_0$ from two methods that probe different distance ranges. The success of this technique will rely of our ability to discover strongly lensed SNe with measurable time delays. Here, we present the magnifications and the time delays for the multiply-imaged galaxies behind the Hubble Frontier Fields (HFF) galaxy clusters, by using recently published lensing models. Continuing on our previous work done for Abell 1689 (A1689) and Abell 370, we also show the prospects of observing strongly lensed SNe behind the HFF clusters with the upcoming James Webb Space Telescope (JWST). With four 1-hour visits in one year, the summed expectations of all six HFF clusters are $sim0.5$ core-collapse (CC) SNe and $sim0.06$ Type Ia SNe (SNe Ia) in F115W band, while with F150W the expectations are higher, $sim0.9$ CC SNe and $sim0.06$ SNe Ia. These estimates match those expected by only surveying A1689, proving that the performance of A1689 as gravitational telescope is superior. In the five HFF clusters presented here, we find that F150W will be able to detect SNe Ia (SNe IIP) exploding in 93 (80) pairs multiply-imaged galaxies with time delays of less than 5 years.
Galaxies with stellar masses <10^7 Msun and specific star formation rates sSFR>10^{-7} yr^{-1} were examined on images of the Hubble Space Telescope Frontier Field Parallels for Abell 2744 and MACS J0416.1-02403. They appear as unresolved Little Blue Dots (LBDs). They are less massive and have higher sSFR than blueberries studied by yang et al. (2017) and higher sSFR than Blue Nuggets studied by Tacchella et al.(2016). We divided the LBDs into 3 redshift bins and, for each, stacked the B435, V606, and I814 images convolved to the same stellar point spread function (PSF). Their radii were determined from PSF deconvolution to be ~80 to ~180 pc. The high sSFR suggest that their entire stellar mass has formed in only 1% of the local age of the universe. The sSFRs at similar epochs in local dwarf galaxies are lower by a factor of ~100. Assuming that the star formation rate is epsilon_ff M_gas/t_ff for efficiency epsilon_ff, gas mass M_gas, and free fall time, t_ff, the gas mass and gas-to-star mass ratio are determined. This ratio exceeds 1 for reasonable efficiencies, and is likely to be ~5 even with a high epsilon_ff of 0.1. We consider whether these regions are forming todays globular clusters. With their observed stellar masses, the maximum likely cluster mass is ~10^5 M_sun, but if star formation continues at the current rate for ~10t_ff~50 Myr before feedback and gas exhaustion stop it, then the maximum cluster mass could become ~10^6 M_sun.
Using the power of gravitational lensing magnification by massive galaxy clusters, the Hubble Frontier Fields provide deep views of six patches of the high redshift Universe. The combination of deep Hubble imaging and exceptional lensing strength has revealed the greatest numbers of multiply-imaged galaxies available to constrain models of cluster mass distributions. However, even with $mathcal{O}(100)$ images per cluster, the uncertainties associated with the reconstructions are not negligible. The goal of this paper is to show the diversity of model magnification predictions. We examine 7 and 9 mass models of Abell 2744 and MACS J0416, respectively, submitted to the Mikulski Archive for Space Telescopes for public distribution in September 2015. The dispersion between model predictions increases from 30% at common low magnifications ($musim2$) to 70% at rare high magnifications ($musim40$). MACS J0416 exhibits smaller dispersions than Abell 2744 for $2<mu<10$. We show that magnification maps based on different lens inversion techniques typically differ from each other by more than their quoted statistical errors. This suggests that some models underestimate the true uncertainties, which are primarily due to various lensing degeneracies. Though the exact mass sheet degeneracy is broken, its generalized counterpart is not broken at least in Abell 2744. Other, local degeneracies are also present in both clusters. Our comparison of models is complementary to the comparison of reconstructions of known synthetic mass distributions. By focusing on observed clusters, we can identify those that are best constrained, and therefore provide the clearest view of the distant Universe.
We present a multi-band analysis of the six Hubble Frontier Field clusters and their parallel fields, producing catalogs with measurements of source photometry and photometric redshifts. We release these catalogs to the public along with maps of intracluster light and models for the brightest galaxies in each field. This rich data set covers a wavelength range from 0.2 to 8 $mu m$, utilizing data from the Hubble Space Telescope, Keck Observatories, Very Large Telescope array, and Spitzer Space Telescope. We validate our products by injecting into our fields and recovering a population of synthetic objects with similar characteristics as in real extragalactic surveys. The photometric catalogs contain a total of over 32,000 entries with 50% completeness at a threshold of $mathrm{mag_{AB}}sim 29.1$ for unblended sources, and $mathrm{mag_{AB}}sim 29$ for blended ones, in the IR-Weighted detection band. Photometric redshifts were obtained by means of template fitting and have an average outlier fraction of 10.3% and scatter $sigma = 0.067$ when compared to spectroscopic estimates. The software we devised, after being tested in the present work, will be applied to new data sets from ongoing and future surveys.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا