No Arabic abstract
Let $G$ be connected nilpotent Lie group acting locally on a real surface $M$. Let $varphi$ be the local flow on $M$ induced by a $1$-parameter subgroup. Assume $K$ is a compact set of fixed points of $varphi$ and $U$ is a neighborhood of $K$ containing no other fixed points. Theorem: If the Dold fixed-point index of $varphi_t|U$ is nonzero for sufficiently small $t>0$, then ${rm Fix} (G) cap K e emptyset$.
Let $BS(1,n) =< a, b | aba^{-1} = b^n >$ be the solvable Baumslag-Solitar group, where $ ngeq 2$. It is known that BS(1,n) is isomorphic to the group generated by the two affine maps of the real line: $f_0(x) = x + 1$ and $h_0(x) = nx $. This paper deals with the dynamics of actions of BS(1,n) on closed orientable surfaces. We exhibit a smooth BS(1,n) action without finite orbits on $TT ^2$, we study the dynamical behavior of it and of its $C^1$-pertubations and we prove that it is not locally rigid. We develop a general dynamical study for faithful topological BS(1,n)-actions on closed surfaces $S$. We prove that such actions $<f,h | h circ f circ h^{-1} = f^n>$ admit a minimal set included in $fix(f)$, the set of fixed points of $f$, provided that $fix(f)$ is not empty. When $S= TT^2$, we show that there exists a positive integer $N$, such that $fix(f^N)$ is non-empty and contains a minimal set of the action. As a corollary, we get that there are no minimal faithful topological actions of BS(1,n) on $TT^2$. When the surface $S$ has genus at least 2, is closed and orientable, and $f$ is isotopic to identity, then $fix(f)$ is non empty and contains a minimal set of the action. Moreover if the action is $C^1$ then $fix(f)$ contains any minimal set.
We show that an approximate lattice in a nilpotent Lie group admits a relatively dense subset of central $(1-epsilon)$-Bragg peaks for every $epsilon > 0$. For the Heisenberg group we deduce that the union of horizontal and vertical $(1-epsilon)$-Bragg peaks is relatively dense in the unitary dual. More generally we study uniform approximate lattices in extensions of lcsc groups. We obtain necesary and sufficient conditions for the existence of a continuous horizontal factor of the associated hull-dynamical system, and study the spectral theory of the hull-dynamical system relative to this horizontal factor.
A nilpotent Cantor action is a minimal equicontinuous action $Phi colon Gamma times frak{X} to frak{X}$ on a Cantor set $frak{X}$, where $Gamma$ contains a finitely-generated nilpotent subgroup $Gamma_0 subset Gamma$ of finite index. In this note, we show that these actions are distinguished among general Cantor actions: any effective action of a finitely generated group on a Cantor space, which is continuously orbit equivalent to a nilpotent Cantor action, must itself be a nilpotent Cantor action. As an application of this result, we obtain new invariants of nilpotent Cantor actions under continuous orbit equivalence.
In this article, we focus on the left translation actions on noncommutative compact connected Lie groups with topological dimension 3 or 4, consisting of ${rm SU}(2),,{rm U}(2),,{rm SO}(3),,{rm SO}(3) times S^1$ and ${{rm Spin}}^{mathbb{C}}(3)$. We define the rotation vectors (numbers) of the left actions induced by the elements in the maximal tori of these groups, and utilize rotation vectors (numbers) to give the topologically conjugate classification of the left actions. Algebraic conjugacy and smooth conjugacy are also considered. As a by-product, we show that for any homeomorphism $f:L(p, -1)times S^1rightarrow L(p, -1)times S^1$, the induced isomorphism $(picirc fcirc i)_*$ maps each element in the fundamental group of $L(p, -1)$ to itself or its inverse, where $i:L(p,-1)rightarrow L(p, -1)times S^1$ is the natural inclusion and $pi:L(p, -1)times S^1rightarrow L(p, -1)$ is the projection.
We study the Ricci tensor of left-invariant pseudoriemannian metrics on Lie groups. For an appropriate class of Lie groups that contains nilpotent Lie groups, we introduce a variety with a natural $mathrm{GL}(n,mathbb{R})$ action, whose orbits parametrize Lie groups with a left-invariant metric; we show that the Ricci operator can be identified with the moment map relative to a natural symplectic structure. From this description we deduce that the Ricci operator is the derivative of the scalar curvature $s$ under gauge transformations of the metric, and show that Lie algebra derivations with nonzero trace obstruct the existence of Einstein metrics with $s eq0$. Using the notion of nice Lie algebra, we give the first example of a left-invariant Einstein metric with $s eq0$ on a nilpotent Lie group. We show that nilpotent Lie groups of dimension $leq 6$ do not admit such a metric, and a similar result holds in dimension $7$ with the extra assumption that the Lie algebra is nice.