Do you want to publish a course? Click here

On fractional Hadamard powers of positive block matrices

166   0   0.0 ( 0 )
 Added by Dominique Guillot
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

Entrywise powers of matrices have been well-studied in the literature, and have recently received renewed attention in the regularization of high-dimensional correlation matrices. In this paper, we study powers of positive semidefinite block matrices $(H_{st})_{s,t=1}^n$ with complex entries. We first characterize the powers $alphainmathbb{R}$ such that the blockwise power map $(H_{st}) mapsto (H_{st}^alpha)$ preserves Loewner positivity. The characterization is obtained by exploiting connections with the theory of matrix monotone functions developed by Loewner. Second, we revisit previous work by Choudhury [Proc. AMS 108] who had provided a lower bound on $alpha$ for preserving positivity when the blocks $H_{st}$ pairwise commute. We completely settle this problem by characterizing the full set of powers preserving positivity in this setting. Our characterizations generalize previous work by FitzGerald-Horn, Bhatia-Elsner, and Hiai from scalars to arbitrary block size, and in particular, generalize the Schur Product Theorem. Finally, a natural and unifying framework for studying the case of diagonalizable blocks consists of replacing real powers by general characters of the complex plane. We thus classify such characters, and generalize our results to this more general setting. In the course of our work, given $betainmathbb{Z}$, we provide lower and upper bounds for the threshold power $alpha >0$ above which the complex characters $re^{itheta}mapsto r^alpha e^{ibetatheta}$ preserve positivity when applied entrywise to positive semidefinite matrices. In particular, we completely resolve the $n=3$ case of a question raised in 2001 by Xingzhi Zhan. As an application, we extend previous work by de Pillis [Duke Math. J. 36] by classifying the characters $K$ of the complex plane for which the map $(H_{st})_{s,t=1}^n mapsto (K({rm tr}(H_{st})))_{s,t=1}^n$ preserves positivity.



rate research

Read More

In this short paper, we review the Euler-Rodrigues formula for three-dimensional rotation via fractional powers of matrices. We derive the rotations by any angle through the spectral behavior of the fractional powers of the rotation matrix by $frac{pi}{2}$ in $mathbb{R}^3$ about some axis.
We investigate polynomials, called m-polynomials, whose generator polynomial has coefficients that can be arranged as a matrix, where q is a positive integer greater than one. Orthogonality relations are established and coefficients are obtained for the expansion of a polynomial in terms of m-polynomials. We conclude this article by an implementation in MATHEMATICA of m-polynomials and the results obtained for them.
Not every positive functional defined on bi-variate polynomials of a prescribed degree bound is represented by the integration against a positive measure. We isolate a couple of conditions filling this gap, either by restricting the class of polynomials to harmonic ones, or imposing the vanishing of a defect indicator. Both criteria offer constructive cubature formulas and they are obtained via well known matrix analysis techniques involving either the dilation of a contractive matrix to a unitary one or the specific structure of the Hessenberg matrix associated to the multiplier by the underlying complex variable.
We study Helson matrices (also known as multiplicative Hankel matrices), i.e. infinite matrices of the form $M(alpha) = {alpha(nm)}_{n,m=1}^infty$, where $alpha$ is a sequence of complex numbers. Helson matrices are considered as linear operators on $ell^2(mathbb{N})$. By interpreting Helson matrices as Hankel matrices in countably many variables we use the theory of multivariate moment problems to show that $M(alpha)$ is non-negative if and only if $alpha$ is the moment sequence of a measure $mu$ on $mathbb{R}^infty$, assuming that $alpha$ does not grow too fast. We then characterize the non-negative bounded Helson matrices $M(alpha)$ as those where the corresponding moment measures $mu$ are Carleson measures for the Hardy space of countably many variables. Finally, we give a complete description of the Helson matrices of finite rank, in parallel with the classical Kronecker theorem on Hankel matrices.
326 - Minghua Lin 2014
Let $T=begin{bmatrix} X &Y 0 & Zend{bmatrix}$ be an $n$-square matrix, where $X, Z$ are $r$-square and $(n-r)$-square, respectively. Among other determinantal inequalities, it is proved $det(I_n+T^*T)ge det(I_r+X^*X)cdot det(I_{n-r}+Z^*Z)$ with equality holds if and only if $Y=0$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا