Do you want to publish a course? Click here

Quantum Gravity models - brief conceptual summary

66   0   0.0 ( 0 )
 Added by Jerzy Lukierski
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

After short historical overview we describe the difficulties with application of standard QFT methods in quantum gravity (QG). The incompatibility of QG with the use of classical continuous space-time required conceptually new approach. We present briefly three proposals: loop quantum gravity (LQG), the field-theoretic framework on noncommutative space-time and QG models formulated on discretized (triangularized) space-time. We evaluate these models as realizing expected important properties of QG: background independence, consistent quantum diffeomorphisms, noncommutative or discrete structure of space-time at very short distances, finite/renormalizable QG corrections. We only briefly outline an important issue of embedding QG into larger geometric and dynamical frameworks (e.g. supergravity, (super)strings, p-branes, M-theory), with the aim to achieve full unification of all fundamental interactions.



rate research

Read More

We study random walks on ensembles of a specific class of random multigraphs which provide an effective graph ensemble for the causal dynamical triangulation (CDT) model of quantum gravity. In particular, we investigate the spectral dimension of the multigraph ensemble for recurrent as well as transient walks. We investigate the circumstances in which the spectral dimension and Hausdorff dimension are equal and show that this occurs when rho, the exponent for anomalous behaviour of the resistance to infinity, is zero. The concept of scale dependent spectral dimension in these models is introduced. We apply this notion to a multigraph ensemble with a measure induced by a size biased critical Galton-Watson process which has a scale dependent spectral dimension of two at large scales and one at small scales. We conclude by discussing a specific model related to four dimensional CDT which has a spectral dimension of four at large scales and two at small scales.
In a series of comments, Bonder et al. criticized our work on decoherence due to time dilation [Nature Physics 11, 668-672 (2015)]. First the authors erroneously claimed that our results contradict the equivalence principle, only to resolve the alleged conflict in a second note. The resolution - relativity of simultaneity - was already explained in our reply [arXiv:1508.03296], which Bonder et al. now essentially reiterate. The newly raised points were also already extensively clarified in our note. The physical prediction of our work remains valid: systems with internal dynamics decohere if the superposed paths have different proper times.
187 - A. J. Schofield 2010
This conference summary and outlook provides a personal overview of the topics and themes of the August 2009 Dresden meeting on quantum criticality and novel phases. The dichotomy between the local moment and the itinerant views of magnetism is revisited and refreshed in new materials, new probes and new theoretical ideas. New universality and apparent zero temperature phases of matter move us beyond the old ideas of quantum criticality. This is accompanied by alternative pairing interactions and as yet unidentified phases developing in the vicinity of quantum critical points. In discussing novel order, the magnetic analogues of superconductivity are considered as candidate states for the hidden order that sometimes develops in the vicinity of quantum critical points in metallic systems. These analogues can be thought of as pairing in the particle-hole channel and are tabulated. This analogy is used to outline a framework to study the relation between ferromagnetic fluctuations and the propensity of a metal to nematic type phases which at weak coupling correspond to Pomeranchuk instabilities. This question can be related to the fundamental relations of Fermi liquid theory.
In recent years several approaches to quantum gravity have found evidence for a scale dependent spectral dimension of space-time varying from four at large scales to two at small scales of order of the Planck length. The first evidence came from numerical results on four-dimensional causal dynamical triangulations (CDT) [Ambjorn et al., Phys. Rev. Lett. 95 (2005) 171]. Since then little progress has been made in analytically understanding the numerical results coming from the CDT approach and showing that they remain valid when taking the continuum limit. Here we argue that the spectral dimension can be determined from a model with fewer degrees of freedom obtained from the CDTs by radial reduction. In the resulting toy model we can take the continuum limit analytically and obtain a scale dependent spectral dimension varying from four to two with scale and having functional behaviour exactly of the form which was conjectured on the basis of the numerical results.
We investigate the underlying quantum group symmetry of 2d Liouville and dilaton gravity models, both consolidating known results and extending them to the cases with $mathcal{N} = 1$ supersymmetry. We first calculate the mixed parabolic representation matrix element (or Whittaker function) of $text{U}_q(mathfrak{sl}(2, mathbb{R}))$ and review its applications to Liouville gravity. We then derive the corresponding matrix element for $text{U}_q(mathfrak{osp}(1|2, mathbb{R}))$ and apply it to explain structural features of $mathcal{N} = 1$ Liouville supergravity. We show that this matrix element has the following properties: (1) its $qto 1$ limit is the classical $text{OSp}^+(1|2, mathbb{R})$ Whittaker function, (2) it yields the Plancherel measure as the density of black hole states in $mathcal{N} = 1$ Liouville supergravity, and (3) it leads to $3j$-symbols that match with the coupling of boundary vertex operators to the gravitational states as appropriate for $mathcal{N} = 1$ Liouville supergravity. This object should likewise be of interest in the context of integrability of supersymmetric relativistic Toda chains. We furthermore relate Liouville (super)gravity to dilaton (super)gravity with a hyperbolic sine (pre)potential. We do so by showing that the quantization of the target space Poisson structure in the (graded) Poisson sigma model description leads directly to the quantum group $text{U}_q(mathfrak{sl}(2, mathbb{R}))$ or the quantum supergroup $text{U}_q(mathfrak{osp}(1|2, mathbb{R}))$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا