No Arabic abstract
In this paper we study the observational constraints that can be imposed on the coupling parameter, $hat alpha$, of the regularized version of the 4-dimensional Einstein-Gauss-Bonnet theory of gravity. We use the scalar-tensor field equations of this theory to perform a thorough investigation of its slow-motion and weak-field limit, and apply our results to observations of a wide array of physical systems that admit such a description. We find that the LAGEOS satellites are the most constraining, requiring $| hat alpha | lesssim 10^{10} ,{rm m}^2$. This constraint suggests that the possibility of large deviations from general relativity is small in all systems except the very early universe ($t<10^{-3}, {rm s}$), or the immediate vicinity of stellar-mass black holes ($Mlesssim100, M_{odot}$). We then consider constraints that can be imposed on this theory from cosmology, black hole systems, and table-top experiments. It is found that early universe inflation prohibits all but the smallest negative values of $hat alpha$, while observations of binary black hole systems are likely to offer the tightest constraints on positive values, leading to overall bounds $0 lesssim hat alpha lesssim 10^8 , {rm m}^2$.
Regularized Einstein-Gauss-Bonnet (EGB) theory of gravity in four dimensions is a new attempt to include nontrivial contributions of Gauss-Bonnet term. In this paper, we make a detailed analysis on possible constraints of the model parameters of the theory from recent cosmological observations, and some theoretical constraints as well. Our results show that the theory with vanishing bare cosmological constant, $Lambda_0$, is ruled out by the current observational value of $w_{de}$, and the observations of GW170817 and GRB 170817A as well. For nonvanishing bare cosmological constant, instead, our results show that the current observation of the speed of GWs measured by GW170817 and GRB 170817A would place a constraints on $tilde{alpha}$, a dimensionless parameter of the theory, as $-7.78times10^{-16}le tilde{alpha} leq 3.33times10^{-15}$.
We study the properties of compact objects in a particular 4D Horndeski theory originating from higher dimensional Einstein-Gauss-Bonnet gravity. Remarkably, an exact vacuum solution is known. This compact object differs from general relativity mostly in the strong field regime. We discuss some properties of black holes in this framework and investigate in detail the properties of neutron stars, both static and in slow rotation. We find that for relatively modest deviations from general relativity, the secondary object in GW190814 is compatible with being a slowly-rotating neutron star, without resorting to very stiff or exotic equations of state. For larger deviations from general relativity, the equilibrium sequence of neutron stars matches asymptotically to the black hole limit, closing the mass gap between neutron stars and black holes of same radius, but the stability of equilibrium solutions has yet to be determined. In light of our results and of current observational constraints, we discuss specific constraints on the coupling constant that parametrizes deviations from general relativity in this theory.
The current trend concerning dense matter physics at sufficiently high densities and low temperatures is expected to behave as a degenerate Fermi gas of quarks forming Cooper pairs, namely a color superconductor, in the core of compact objects. In this context, we study the anisotropy of quark stars (QSs) assuming the internal composition to be comprised of homogeneous, charge neutral 3-flavor interacting quark matter with $mathcal{O}(m_s^4)$ corrections. Using the equation of state (EoS) with the Tolmann-Oppenheimer-Volkoff (TOV) structure equations, we perform numerical calculation for quark stars and determine the maximum mass-radius relation in the context of $4D$ Einstein-Gauss-Bonnet (EGB) gravity. In particular, we consider the effects of Gauss-Bonnet (GB) coupling constant on the diagrams related to mass-radius $(M-R)$ relation and the mass-central mass density $(M-rho_c)$ relation of QSs. We pay particular attention to the influence of the anisotropy in the equilibrium and stability of strange stars. We also study the other properties of QSs related to compactness and binding energy. Interestingly, our result provides circumstantial evidence in favor of super-massive pulsars in $4D$ EGB gravity.
Recently it has been proposed that the Gauss-Bonnet coupling parameter of Lovelock gravity may suitably be rescaled in order to admit physically viable models of celestial phenomena such that higher curvature effects are active in standard four dimensions as opposed to the usual higher dimensions. We investigate the consequences of this modification in the context of stellar modelling. The evolution of perfect fluid distributions is governed by the pressure isotropy condition and through stipulation of one of the metric potentials complete models emerge from solutions of the master differential equation. New classes of exact solution with this approach have been reported. One particular model is analysed in detail and shown to comport with elementary physical requirements demanded of realistic compact stars suggesting that the modified theory is not inconsistent with observations.
In this work we study the properties of compact spheres made of a charged perfect fluid with a MIT bag model EoS for quark matter. Considering static spherically symmetric spacetime we derive the hydrostatic equilibrium equations in the recently formulated four dimensional Einstein-Gauss-Bonnet ($4D$ EGB) gravity theory. In this setting, the modified TOV equations are solved numerically with the aim to investigate the impact of electric charge on the stellar structure. A nice feature of $4D$ EGB theory is that the Gauss-Bonnet term has a non-vanishing contribution to the gravitational dynamics in $4D$ spacetime. We therefore analyse the effects of Gauss-Bonnet coupling constant $alpha$ and the charge fraction $beta$ on the mass-radius ($M-R$) diagram and also the mass-central density $(M-rho_c)$ relation of quark stars. Finally, we conclude that depending on the choice of coupling constant one could have larger mass and radius compared with GR and can also be relevant for more massive compact objects due to the effect of the repulsive Coulomb force.