Do you want to publish a course? Click here

Resonant Lifetime of Core-Excited Organic Adsorbates from First Principles

178   0   0.0 ( 0 )
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate by first-principles simulations the resonant electron-transfer lifetime from the excited state of an organic adsorbate to a semiconductor surface, namely isonicotinic acid on rutile TiO$_2$(110). The molecule-substrate interaction is described using density functional theory, while the effect of a truly semi-infinite substrate is taken into account by Greens function techniques. Excitonic effects due to the presence of core-excited atoms in the molecule are shown to be instrumental to understand the electron-transfer times measured using the so-called core-hole-clock technique. In particular, for the isonicotinic acid on TiO$_2$(110), we find that the charge injection from the LUMO is quenched since this state lies within the substrate band gap. We compute the resonant charge-transfer times from LUMO+1 and LUMO+2, and systematically investigate the dependence of the elastic lifetimes of these states on the alignment among adsorbate and substrate states.



rate research

Read More

Core-level X-ray Photoelectron Spectroscopy (XPS) is often used to study the surfaces of heterogeneous copper-based catalysts, but the interpretation of measured spectra, in particular the assignment of peaks to adsorbed species, can be extremely challenging. In this study we demonstrate that first principles calculations using the delta Self Consistent Field (delta-SCF) method can be used to guide the analysis of experimental core-level spectra of complex surfaces relevant to heterogeneous catalysis. Specifically, we calculate core-level binding energy shifts for a series of adsorbates on Cu(111) and show that the resulting C1s and O1s binding energy shifts for adsorbed CO, CO2, C2H4, HCOO, CH3O, H2O, OH and a surface oxide on Cu(111) are in good overall agreement with the experimental literature. In the few cases where the agreement is less good, the theoretical results may indicate the need to re-examine experimental peak assignments.
We perform a systematic first-principles study of phosphorene in the presence of typical monovalent (hydrogen, fluorine) and divalent (oxygen) impurities. The results of our modeling suggest a decomposition of phosphorene into weakly bonded one-dimensional (1D) chains upon single- and double-side hydrogenation and fluorination. In spite of a sizable quasiparticle band gap (2.29 eV), fully hydrogenated phosphorene found to be dynamically unstable. In contrast, full fluorination of phosphorene gives rise to a stable structure, being an indirect gap semiconductor with the band gap of 2.27 eV. We also show that fluorination of phosphorene from the gas phase is significantly more likely than hydrogenation due to the relatively low energy barrier for the dissociative adsorption of F2 (0.19 eV) compared to H2 (2.54 eV). At low concentrations, monovalent impurities tend to form regular atomic rows phosphorene, though such patterns do not seem to be easily achievable due to high migration barriers (1.09 and 2.81 eV for H2 and F2, respectively). Oxidation of phosphorene is shown to be a qualitatively different process. Particularly, we observe instability of phosphorene upon oxidation, leading to the formation of disordered amorphous-like structures at high concentrations of impurities.
The ab-initio theory of low-field electronic transport properties such as carrier mobility in semiconductors is well-established. However, an equivalent treatment of electronic fluctuations about a non-equilibrium steady state, which are readily probed experimentally, remains less explored. Here, we report a first-principles theory of electronic noise for warm electrons in semiconductors. In contrast with typical numerical methods used for electronic noise, no adjustable parameters are required in the present formalism, with the electronic band structure and scattering rates calculated from first-principles. We demonstrate the utility of our approach by applying it to GaAs and show that spectral features in AC transport properties and noise originate from the disparate time scales of momentum and energy relaxation, despite the dominance of optical phonon scattering. Our formalism enables a parameter-free approach to probe the microscopic transport processes that give rise to electronic noise in semiconductors.
We have given a summary on our theoretical predictions of three kinds of topological semimetals (TSMs), namely, Dirac semimetal (DSM), Weyl semimetal (WSM) and Node-Line Semimetal (NLSM). TSMs are new states of quantum matters, which are different with topological insulators. They are characterized by the topological stability of Fermi surface, whether it encloses band crossing point, i.e., Dirac cone like energy node, or not. They are distinguished from each other by the degeneracy and momentum space distribution of the nodal points. To realize these intriguing topological quantum states is quite challenging and crucial to both fundamental science and future application. In 2012 and 2013, Na$_3$Bi and Cd$_3$As$_2$ were theoretically predicted to be DSM, respectively. Their experimental verifications in 2014 have ignited the hot and intensive studies on TSMs. The following theoretical prediction of nonmagnetic WSM in TaAs family stimulated a second wave and many experimental works have come out in this year. In 2014, a kind of three dimensional crystal of carbon has been proposed to be NLSM due to negligible spin-orbit coupling and coexistence of time-reversal and inversion symmetry. Though the final experimental confirmation of NLSM is still missing, there have been several theoretical proposals, including Cu$_3$PdN from us. In the final part, we have summarized the whole family of TSMs and their relationship.
This work is the first step towards understanding thermionic transport properties of graphene/phosphorene/graphene van der Waals heterostructures in contact with gold electrodes by using density functional theory based first principles calculations combined with real space Greens function formalism. We show that for monolayer phosphorene in the heterostructure, quantum tunneling dominates the transport. By adding more phosphorene layers, one can switch from tunneling dominated transport to thermionic dominated transport, resulting in transporting more heat per charge carrier, thus, enhancing the cooling coefficient of performance. The thermionic coefficient of performance for the proposed device is 18.5 at 600 K corresponding to an equivalent ZT of 0.13, which is significant for nanoscale devices.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا