Do you want to publish a course? Click here

M/G/$infty$ polling systems with random visit times

94   0   0.0 ( 0 )
 Added by Maria Vlasiou
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

We consider a polling system where a group of an infinite number of servers visits sequentially a set of queues. When visited, each queue is attended for a random time. Arrivals at each queue follow a Poisson process, and service time of each individual customer is drawn from a general probability distribution function. Thus, each of the queues comprising the system is, in isolation, an M/G/$infty$-type queue. A job that is not completed during a visit will have a new service time requirement sampled from the service-time distribution of the corresponding queue. To the best of our knowledge, this paper is the first in which an M/G/$infty$-type polling system is analysed. For this polling model, we derive the probability generating function and expected value of the queue lengths, and the Laplace-Stieltjes transform and expected value of the sojourn time of a customer. Moreover, we identify the policy that maximises the throughput of the system per cycle and conclude that under the Hamiltonian-tour approach, the optimal visiting order is emph{independent} of the number of customers present at the various queues at the start of the cycle.



rate research

Read More

In this paper, we analyse a single server polling model with two queues. Customers arrive at the two queues according to two independent Poisson processes. There is a single server that serves both queues with generally distributed service times. The server spends an exponentially distributed amount of time in each queue. After the completion of this residing time, the server instantaneously switches to the other queue, i.e., there is no switch-over time. For this polling model we derive the steady-state marginal workload distribution, as well as heavy traffic and heavy tail asymptotic results. Furthermore, we also calculate the joint queue length distribution for the special case of exponentially distributed service times using singular perturbation analysis.
We study infinite-server queues in which the arrival process is a Cox process (or doubly stochastic Poisson process), of which the arrival rate is given by shot noise. A shot-noise rate emerges as a natural model, if the arrival rate tends to display sudden increases (or: shots) at random epochs, after which the rate is inclined to revert to lower values. Exponential decay of the shot noise is assumed, so that the queueing systems are amenable for analysis. In particular, we perform transient analysis on the number of customers in the queue jointly with the value of the driving shot-noise process. Additionally, we derive heavy-traffic asymptotics for the number of customers in the system by using a linear scaling of the shot intensity. First we focus on a one dimensional setting in which there is a single infinite-server queue, which we then extend to a network setting.
We consider a one dimensional random walk in random environment that is uniformly biased to one direction. In addition to the transition probability, the jump rate of the random walk is assumed to be spatially inhomogeneous and random. We study the probability that the random walk travels slower than its typical speed and determine its decay rate asymptotic.
154 - Gechun Liang , Wei Wei 2013
This paper introduces a new class of optimal switching problems, where the player is allowed to switch at a sequence of exogenous Poisson arrival times, and the underlying switching system is governed by an infinite horizon backward stochastic differential equation system. The value function and the optimal switching strategy are characterized by the solution of the underlying switching system. In a Markovian setting, the paper gives a complete description of the structure of switching regions by means of the comparison principle.
70 - Peter Nandori , Zeyu Shen 2016
We prove that the local time process of a planar simple random walk, when time is scaled logarithmically, converges to a non-degenerate pure jump process. The convergence takes place in the Skorokhod space with respect to the $M1$ topology and fails to hold in the $J1$ topology.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا