No Arabic abstract
Quantum spin ice represents a paradigmatic example on how the physics of frustrated magnets is related to gauge theories. In the present work we address the problem of approximately realizing quantum spin ice in two dimensions with cold atoms in optical lattices. The relevant interactions are obtained by weakly admixing van der Waals interactions between laser admixed Rydberg states to the atomic ground state atoms, exploiting the strong angular dependence of interactions between Rydberg p-states together with the possibility of designing step-like potentials. This allows us to implement Abelian gauge theories in a series of geometries, which could be demonstrated within state of the art atomic Rydberg experiments. We numerically analyze the family of resulting microscopic Hamiltonians and find that they exhibit both classical and quantum order by disorder, the latter yielding a quantum plaquette valence bond solid. We also present strategies to implement Abelian gauge theories using both s- and p-Rydberg states in exotic geometries, e.g. on a 4-8 lattice.
We analyze the zero-temperature phases of an array of neutral atoms on the kagome lattice, interacting via laser excitation to atomic Rydberg states. Density-matrix renormalization group calculations reveal the presence of a wide variety of complex solid phases with broken lattice symmetries. In addition, we identify a novel regime with dense Rydberg excitations that has a large entanglement entropy and no local order parameter associated with lattice symmetries. From a mapping to the triangular lattice quantum dimer model, and theories of quantum phase transitions out of the proximate solid phases, we argue that this regime could contain one or more phases with topological order. Our results provide the foundation for theoretical and experimental explorations of crystalline and liquid states using programmable quantum simulators based on Rydberg atom arrays.
We propose the construction of a many-body phase of matter with fractal structure using arrays of Rydberg atoms. The degenerate low energy excited states of this phase form a self-similar fractal structure. This phase is analogous to the so-called type-II fracton topological states. The main challenge in realizing fracton-like models in standard condensed matter platforms is the creation of multi-spin interactions, since realistic systems are typically dominated by two-body interactions. In this work, we demonstrate that the Van der Waals interaction and experimental tunability of Rydberg-based platforms enable the simulation of exotic phases of matter with fractal structures, and the study of a quantum phase transition involving a fractal ordered phase.
The interplay between antiferromagnetic interaction and hole motion is capable of inducing intriguing conducting topological Haldane phases described by a finite non-local string order parameter. Here we show that these states of matter are captured by the one dimensional $t-J_z$ model which can be experimentally realized with dressed Rydberg atoms trapped onto a one dimensional optical lattice. In the sector with vanishing total magnetization exact Bethe ansatz calculations associated to bosonization technique allow to predict that both metallic and superconducting topological Haldane states can be achieved. With the addition of an appropriate magnetic field the system enters in a domain wall structure with finite total magnetization. In this regime conducting topological Haldane states are confined in domains separated by regions where fully polarized Luttinger liquid occurs. A procedure to dynamically stabilize such Haldane topological phases starting from a confined Ising state is also described
Spin models are the prime example of simplified manybody Hamiltonians used to model complex, real-world strongly correlated materials. However, despite their simplified character, their dynamics often cannot be simulated exactly on classical computers as soon as the number of particles exceeds a few tens. For this reason, the quantum simulation of spin Hamiltonians using the tools of atomic and molecular physics has become very active over the last years, using ultracold atoms or molecules in optical lattices, or trapped ions. All of these approaches have their own assets, but also limitations. Here, we report on a novel platform for the study of spin systems, using individual atoms trapped in two-dimensional arrays of optical microtraps with arbitrary geometries, where filling fractions range from 60 to 100% with exact knowledge of the initial configuration. When excited to Rydberg D-states, the atoms undergo strong interactions whose anisotropic character opens exciting prospects for simulating exotic matter. We illustrate the versatility of our system by studying the dynamics of an Ising-like spin-1/2 system in a transverse field with up to thirty spins, for a variety of geometries in one and two dimensions, and for a wide range of interaction strengths. For geometries where the anisotropy is expected to have small effects we find an excellent agreement with ab-initio simulations of the spin-1/2 system, while for strongly anisotropic situations the multilevel structure of the D-states has a measurable influence. Our findings establish arrays of single Rydberg atoms as a versatile platform for the study of quantum magnetism.
Over the last decade, systems of individually-controlled neutral atoms, interacting with each other when excited to Rydberg states, have emerged as a promising platform for quantum simulation of many-body problems, in particular spin systems. Here, we review the techniques underlying quantum gas microscopes and arrays of optical tweezers used in these experiments, explain how the different types of interactions between Rydberg atoms allow a natural mapping onto various quantum spin models, and describe recent results that were obtained with this platform to study quantum many-body physics.