Do you want to publish a course? Click here

Spectral evolution in gamma-ray bursts: predictions of the internal shock model and comparison to observations

140   0   0.0 ( 0 )
 Added by Frederic Daigne
 Publication date 2014
  fields Physics
and research's language is English
 Authors Z. Bosnjak




Ask ChatGPT about the research

Several trends have been identified in the prompt gamma-ray burst (GRB) emission: e.g. hard-to-soft evolution, pulse width evolution with energy, time lags, hardness-intensity/-fluence correlations. Recently Fermi has significantly extended the spectral coverage of GRB observations and improved the characterization of this spectral evolution. We study how internal shocks can reproduce these observations. In this model the emission comes from the synchrotron radiation of shock accelerated electrons, and the spectral evolution is governed by the evolution of the physical conditions in the shocked regions. We present a comprehensive set of simulations of a single pulse and investigate the impact of the model parameters, related to the shock microphysics and to the initial conditions in the ejecta. We find a general qualitative agreement between the model and the various observations used for the comparison. All these properties or relations are governed by the evolution of the peak energy and photon indices of the spectrum. In addition, we identify the conditions for a quantitative agreement. We find that the best agreement is obtained for (i) steep electron slopes (p>~2.7), (ii) microphysics parameters varying with shock conditions so that more electrons are accelerated in stronger shocks, (iii) steep variations of the initial Lorentz factor in the ejecta. When simulating short GRBs by contracting all timescales, all other parameters being unchanged, we show that the hardness-duration correlation is reproduced, as well as the evolution with duration of the pulse properties. Finally, we investigate the signature at high energy of these different scenarios and find distinct properties - delayed onset, longer emission, and flat spectrum in some cases - suggesting that internal shocks could have a significant contribution to the prompt LAT emission. [abridged]



rate research

Read More

Gamma-ray bursts (GRBs) are promising as sources of neutrinos and cosmic rays. In the internal shock scenario, blobs of plasma emitted from a central engine collide within a relativistic jet and form shocks, leading to particle acceleration and emission. Motivated by present experimental constraints and sensitivities, we improve the predictions of particle emission by investigating time-dependent effects from multiple shocks. We produce synthetic light curves with different variability timescales that stem from properties of the central engine. For individual GRBs, qualitative conclusions about model parameters, neutrino production efficiency, and delays in high-energy gamma rays can be deduced from inspection of the gamma-ray light curves. GRBs with fast time variability without additional prominent pulse structure tend to be efficient neutrino emitters, whereas GRBs with fast variability modulated by a broad pulse structure can be inefficient neutrino emitters and produce delayed high-energy gamma-ray signals. Our results can be applied to quantitative tests of the GRB origin of ultra-high-energy cosmic rays, and have the potential to impact current and future multi-messenger searches.
The prompt emission of gamma-ray bursts probably comes from a highly relativistic wind which converts part of its kinetic energy into radiation via the formation of shocks within the wind itself. Such internal shocks can occur if the wind is generated with a highly non uniform distribution of the Lorentz factor. We estimate the expected photospheric emission of such a wind when it becomes transparent. We compare this thermal emission (temporal profile + spectrum) to the non-thermal emission produced by the internal shocks. In most cases, we predict a rather bright thermal emission that should already have been detected. This favors acceleration mechanisms for the wind where the initial energy input is under magnetic rather than thermal form. Such scenarios can produce thermal X-ray precursors comparable to those observed by GINGA and WATCH/GRANAT.
165 - G. Ghirlanda 2010
We study the spectral evolution of 13 short duration Gamma Ray Bursts (GRBs) detected by the Gamma Burst Monitor (GBM) on board Fermi. We study spectra resolved in time at the level of 2-512 ms in the 8 keV-35 MeV energy range. We find a strong correlation between the observed peak energy Ep and the flux P within individual short GRBs. The slope of the Ep P^s correlation for individual bursts ranges between ~0.4 and ~1. There is no correlation between the low energy spectral index and the peak energy or the flux. Our results show that in our 13 short GRBs Ep evolves in time tracking the flux. This behavior is similar to what found in the population of long GRBs and it is in agreement with the evidence that long GRBs and (the still few) short GRBs with measured redshifts follow the same rest frame Ep-Liso correlation. Its origin is most likely to be found in the radiative mechanism that has to be the same in both classes of GRBs.
156 - L. Nava 2010
We compare the spectral properties of 227 Gamma Ray Bursts (GRBs) detected by the Fermi Gamma Ray Burst Monitor (GBM) up to February 2010 with those of bursts detected by the CGRO/BATSE instrument. Out of 227 Fermi GRBs, 166 have a measured peak energy E_peak_obs of their uF( u) spectrum: of these 146 and 20 belong the long and short class, respectively. Fermi long bursts follow the correlations defined by BATSE bursts between their E_peak_obs vs fluence and peak flux: as already shown for the latter ones, these correlations and their slopes do not originate from instrumental selection effects. Fermi/GBM bursts extend such correlations toward lower fluence/peak energy values with respect to BATSE ones whereas no GBM long burst with E_peak_obs exceeding a few MeV is found, despite the possibility of detecting them. Again as for BATSE, $sim$ 5% of long and almost all short GRBs detected by Fermi/GBM are outliers of the E_peak-isotropic equivalent energy (Amati) correlation while no outlier (neither long nor short) of the E_peak-isotropic equivalent luminosity (Yonetoku) correlation is found. Fermi long bursts have similar typical values of E_peak_obs but a harder low energy spectral index with respect to all BATSE events, exacerbating the inconsistency with the limiting slopes of the simplest synchrotron emission models. Although the short GRBs detected by Fermi are still only a few, we confirm that their E_peak_obs is greater and the low energy spectrum is harder than those of long ones. We discuss the robustness of these results with respect to observational biases induced by the differences between the GBM and BATSE instruments.
125 - Z. Bosnjak 2009
The prompt GRB emission is thought to arise from electrons accelerated in internal shocks propagating within a highly relativistic outflow. The launch of Fermi offers the prospect of observations with unprecedented sensitivity in high-energy (>100 MeV) gamma-rays. The aim is to explore the predictions for HE emission from internal shocks, taking into account both dynamical and radiative aspects, and to deduce how HE observations constrain the properties of the relativistic outflow. The emission is modeled by combining a time-dependent radiative code with a dynamical code giving the evolution of the physical conditions in the shocked regions.Synthetic lightcurves and spectra are compared to observations. The HE emission deviates significantly from analytical estimates, which tend to overpredict the IC component, when the time dependence and full cross-sections are included. The exploration of the parameter space favors the case where the dominant process in the BATSE range is synchrotron emission. The HE component becomes stronger for weaker magnetic fields. The HE lightcurve can display a prolonged pulse duration due to IC emission, or even a delayed peak compared to the BATSE range.Alternatively, having dominant IC emission in the BATSE range requires most electrons to be accelerated into a steep power-law distribution and implies strong 2nd order IC scattering. In this case, the BATSE and HE lightcurves are very similar. The combined dynamical and radiative approach allows a firm appraisal of GRB HE prompt emission. A diagnostic procedure is presented to identify from observations the dominant emission process and derive constrains on the bulk Lorentz factor, particle density and magnetic field of the outflow.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا