Do you want to publish a course? Click here

Quantum Tests of the Einstein Equivalence Principle with the STE-QUEST Space Mission

162   0   0.0 ( 0 )
 Added by Luc Blanchet
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present in detail the scientific objectives in fundamental physics of the Space-Time Explorer and QUantum Equivalence Space Test (STE-QUEST) space mission. STE-QUEST was pre-selected by the European Space Agency together with four other missions for the cosmic vision M3 launch opportunity planned around 2024. It carries out tests of different aspects of the Einstein Equivalence Principle using atomic clocks, matter wave interferometry and long distance time/frequency links, providing fascinating science at the interface between quantum mechanics and gravitation that cannot be achieved, at that level of precision, in ground experiments. We especially emphasize the specific strong interest of performing equivalence principle tests in the quantum regime, i.e. using quantum atomic wave interferometry. Although STE-QUEST was finally not selected in early 2014 because of budgetary and technological reasons, its science case was very highly rated. Our aim is to expose that science to a large audience in order to allow future projects and proposals to take advantage of the STE-QUEST experience.



rate research

Read More

General Relativity is today the best theory of gravity addressing a wide range of phenomena. Our understanding of physical laws, from cosmology to local scales, cannot be properly formulated without taking into account it. It is based on one of the most fundamental principles of Nature, the Equivalence Principle, which represents the core of the Einstein theory of gravity. The confirmation of its validity at different scales and in different contexts represents one of the main challenges of modern physics both from the theoretical and the experimental points of view. A major issue related to this principle is the fact that we actually do not know if it is valid at quantum level. Furthermore, recent progress on relativistic theories of gravity have to take into account new issues like Dark Matter and Dark Energy, as well as the validity of fundamental principles like local Lorentz and position invariance. Experiments allow to set stringent constraints on well established symmetry laws, on the physics beyond the Standard Model of particles and interactions, and on General Relativity and its possible extensions. In this review, we discuss precision tests of gravity in General Relativity and alternative theories and their relation with the Equivalence Principle. In the first part, we discuss the Einstein Equivalence Principle according to its weak and strong formulation. We recall some basic topics of General Relativity and the necessity of its extension. Some models of modified gravity are presented in some details. The second part of the paper is devoted to the experimental tests of the Equivalence Principle in its weak formulation. We present the results and methods used in high-precision experiments, and discuss the potential and prospects for future experimental tests.
We briefly summarize motivations for testing the weak equivalence principle and then review recent torsion-balance results that compare the differential accelerations of beryllium-aluminum and beryllium-titanium test body pairs with precisions at the part in $10^{13}$ level. We discuss some implications of these results for the gravitational properties of antimatter and dark matter, and speculate about the prospects for further improvements in experimental sensitivity.
The Lunar Laser Ranging (LLR) experiment provides precise observations of the lunar orbit that contribute to a wide range of science investigations. In particular, time series of highly accurate measurements of the distance between the Earth and Moon provide unique information that determine whether, in accordance with the Equivalence Principle (EP), both of these celestial bodies are falling towards the Sun at the same rate, despite their different masses, compositions, and gravitational self-energies. Analyses of precise laser ranges to the Moon continue to provide increasingly stringent limits on any violation of the EP. Current LLR solutions give (-0.8 +/- 1.3) x 10^{-13} for any possible inequality in the ratios of the gravitational and inertial masses for the Earth and Moon, (m_G/m_I)_E - (m_G/m_I)_M. Such an accurate result allows other tests of gravitational theories. Focusing on the tests of the EP, we discuss the existing data and data analysis techniques. The robustness of the LLR solutions is demonstrated with several different approaches to solutions. Additional high accuracy ranges and improvements in the LLR data analysis model will further advance the research of relativistic gravity in the solar system, and will continue to provide highly accurate tests of the Equivalence Principle.
Einstein equivalence principle (EEP), as one of the foundations of general relativity, is a fundamental test of gravity theories. In this paper, we propose a new method to test the EEP of electromagnetic interactions through observations of black hole photon rings, which naturally extends the scale of Newtonian and post-Newtoian gravity where the EEP violation through a variable fine structure constant has been well constrained to that of stronger gravity. We start from a general form of Lagrangian that violates EEP, where a specific EEP violation model could be regarded as one of the cases of this Lagrangian. Within the geometrical optical approximation, we find that the dispersion relation of photons is modified: for photons moving in circular orbit, the dispersion relation simplifies, and behaves such that photons with different linear polarizations perceive different gravitational potentials. This makes the size of black hole photon ring depend on polarization. Further assuming that the EEP violation is small, we derive an approximate analytic expression for spherical black holes showing that the change in size of the photon ring is proportional to the violation parameters. We also discuss several cases of this analytic expression for specific models. Finally, we explore the effects of black hole rotation and derive a modified proportionality relation between the change in size of photon ring and the violation parameters. The numerical and analytic results show that the influence of black hole rotation on the constraints of EEP violation is relatively weak for small magnitude of EEP violation and small rotation speed of black holes.
Recent results have shown that a field non-minimally coupled to the electromagnetic Lagrangian can induce a violation of the Einstein equivalence principle. { This kind of coupling is present in a very wide class of gravitation theories.} In a cosmological context, this would break the validity of the cosmic distance duality relation as well as cause a time variation of the fine structure constant. Here, we improve constraints on this scenario by using four different observables: the luminosity distance of type Ia supernovae, the angular diameter distance of galaxy clusters, the gas mass fraction of galaxy clusters and the temperature of the cosmic microwave background at different redshifts. We consider four standard parametrizations adopted in the literature and show that, due to a high complementarity of the data, the errors are shrunk between 20% and 40% depending on the parametrization. We also show that our constraints are weakly affected by the geometry considered to describe the galaxy clusters. In short, no violation of the Einstein equivalence principle is detected up to redshifts $sim$ 3.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا