No Arabic abstract
Given a pair of finite groups $F, G$ and a normalized 3-cocycle $omega$ of $G$, where $F$ acts on $G$ as automorphisms, we consider quasi-Hopf algebras defined as a cleft extension $Bbbk^G_omega#_c,Bbbk F$ where $c$ denotes some suitable cohomological data. When $Frightarrow overline{F}:=F/A$ is a quotient of $F$ by a central subgroup $A$ acting trivially on $G$, we give necessary and sufficient conditions for the existence of a surjection of quasi-Hopf algebras and cleft extensions of the type $Bbbk^G_omega#_c, Bbbk Frightarrow Bbbk^G_omega#_{overline{c}} , Bbbk overline{F}$. Our construction is particularly natural when $F=G$ acts on $G$ by conjugation, and $Bbbk^G_omega#_c Bbbk G$ is a twisted quantum double $D^{omega}(G)$. In this case, we give necessary and sufficient conditions that Rep($Bbbk^G_omega#_{overline{c}} , Bbbk overline{G}$) is a modular tensor category.
The notion of crossed product by a coquasi-bialgebra H is introduced and studied. The resulting crossed product is an algebra in the monoidal category of right H-comodules. We give an interpretation of the crossed product as an action of a monoidal category. In particular, necessary and sufficient conditions for two crossed products to be equivalent are provided. Then, two structure theorems for coquasi Hopf modules are given. First, these are relative Hopf modules over the crossed product. Second, the category of coquasi-Hopf modules is trivial, namely equivalent to the category of modules over the starting associative algebra. In connection the crossed product, we recall the notion of a cleft extension over a coquasi-Hopf algebra. A Morita context of Hom spaces is constructed in order to explain these extensions, which are shown to be equivalent with crossed product with invertible cocycle. At the end, we give a complete description of all cleft extensions by the non-trivial coquasi-Hopf algebras of dimension two and three.
We classify Lagrangian subcategories of the representation category of a twisted quantum double of a finite group. In view of results of 0704.0195v2 this gives a complete description of all braided tensor equivalent pairs of twisted quantum doubles of finite groups. We also establish a canonical bijection between Lagrangian subcategories of the representation category of a twisted quantum double of a finite group G and module categories over the category of twisted G-graded vector spaces such that the dual tensor category is pointed. This can be viewed as a quantum version of V. Drinfelds characterization of homogeneous spaces of a Poisson-Lie group in terms of Lagrangian subalgebras of the double of its Lie bialgebra. As a consequence, we obtain that two group-theoretical fusion categories are weakly Morita equivalent if and only if their centers are equivalent as braided tensor categories.
We describe all fusion subcategories of the representation category of a twisted quantum double of a finite group. In view of the fact that every group-theoretical braided fusion category can be embedded into a representation category of a twisted quantum double of a finite group, this gives a complete description of all group-theoretical braided fusion categories. We describe the lattice and give formulas for some invariants of the fusion subcategories of representation category of a twisted quantum double of a finite group. We also give a characterization of group-theoretical braided fusion categories as equivariantizations of pointed categories.
For a Hopf algebra B with bijective antipode, we show that the Heisenberg double H(B^*) is a braided commutative Yetter--Drinfeld module algebra over the Drinfeld double D(B). The braiding structure allows generalizing H(B^*) = B^{*cop}braid B to Heisenberg n-tuples and chains ...braid B^{*cop}braid B braid B^{*cop}braid Bbraid..., all of which are Yetter--Drinfeld D(B)-module algebras. For B a particular Taft Hopf algebra at a 2p-th root of unity, the construction is adapted to yield Yetter--Drinfeld module algebras over the 2p^3-dimensional quantum group U_qsl(2).
We discussed twisted quantum deformations of D=4 Lorentz and Poincare algebras. In the case of Poincare algebra it is shown that almost all classical r-matrices of S.Zakrzewski classification can be presented as a sum of subordinated r-matrices of Abelian and Jordanian types. Corresponding twists describing quantum deformations are obtained in explicit form. This work is an extended version of the paper url{arXiv:0704.0081v1 [math.QA]}.