Do you want to publish a course? Click here

Twisted Quantum Deformations of Lorentz and Poincar{e} algebras

220   0   0.0 ( 0 )
 Added by Valeriy Tolstoy
 Publication date 2007
  fields
and research's language is English
 Authors V.N. Tolstoy




Ask ChatGPT about the research

We discussed twisted quantum deformations of D=4 Lorentz and Poincare algebras. In the case of Poincare algebra it is shown that almost all classical r-matrices of S.Zakrzewski classification can be presented as a sum of subordinated r-matrices of Abelian and Jordanian types. Corresponding twists describing quantum deformations are obtained in explicit form. This work is an extended version of the paper url{arXiv:0704.0081v1 [math.QA]}.



rate research

Read More

217 - V.N. Tolstoy 2017
We discussed quantum deformations of D=4 Lorentz and Poincare algebras. In the case of Poincare algebra it is shown that almost all classical r-matrices of S. Zakrzewski classification correspond to twisted deformations of Abelian and Jordanian types . A part of twists corresponding to the r-matrices of Zakrzewski classification are given in explicit form.
129 - V.N. Tolstoy 2007
We discuss quantum deformations of Jordanian type for Lie superalgebras. These deformations are described by twisting functions with support from Borel subalgebras and they are multiparameter in the general case. The total twists are presented in explicit form for the Lie superalgebras sl(m|n) and osp(1|2n). We show also that the classical $r$-matrix for a light-cone deformation of D=4 super-Poincare algebra is of Jordanian type and a corresponding twist is given in explicit form.
147 - B. Feigin , M. Jimbo , E. Mukhin 2020
The deformed $mathcal W$ algebras of type $textsf{A}$ have a uniform description in terms of the quantum toroidal $mathfrak{gl}_1$ algebra $mathcal E$. We introduce a comodule algebra $mathcal K$ over $mathcal E$ which gives a uniform construction of basic deformed $mathcal W$ currents and screening operators in types $textsf{B},textsf{C},textsf{D}$ including twisted and supersymmetric cases. We show that a completion of algebra $mathcal K$ contains three commutative subalgebras. In particular, it allows us to obtain a commutative family of integrals of motion associated with affine Dynkin diagrams of all non-exceptional types except $textsf{D}^{(2)}_{ell+1}$. We also obtain in a uniform way deformed finite and affine Cartan matrices in all classical types together with a number of new examples, and discuss the corresponding screening operators.
Quantum bialgebras derivable from Uq(sl2) which contain idempotents and von Neumann regular Cartan-like generators are introduced and investigated. Various types of antipodes (invertible and von Neumann regular) on these bialgebras are constructed, which leads to a Hopf algebra structure and a von Neumann-Hopf algebra structure, respectively. For them, explicit forms of some particular R-matrices (also, invertible and von Neumann regular) are presented, and the latter respects the Pierce decomposition.
232 - Brent Pym 2014
We describe the possible noncommutative deformations of complex projective three-space by exhibiting the Calabi--Yau algebras that serve as their homogeneous coordinate rings. We prove that the space parametrizing such deformations has exactly six irreducible components, and we give explicit presentations for the generic members of each family in terms of generators and relations. The proof uses deformation quantization to reduce the problem to a similar classification of unimodular quadratic Poisson structures in four dimensions, which we extract from Cerveau and Lins Netos classification of degree-two foliations on projective space. Corresponding to the ``exceptional component in their classification is a quantization of the third symmetric power of the projective line that supports bimodule quantizations of the classical Schwarzenberger bundles.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا