No Arabic abstract
We introduce a Banach Lie group $G$ of unitary operators subject to a natural trace condition. We compute the homotopy groups of $G$, describe its cohomology and construct an $S^1$-central extension. We show that the central extension determines a non-trivial gerbe on the action Lie groupoid $Gltimes mathfrak{k}$, where $mathfrak{k}$ denotes the Hilbert space of self-adjoint Hilbert-Schmidt operators. With an eye towards constructing elements in twisted K-theory, we prove the existence of a cubic Dirac operator $mathbb{D}$ in a suitable completion of the quantum Weil algebra $mathcal{U}(mathfrak{g}) otimes Cl(mathfrak{k})$, which is subsequently extended to a projective family of self-adjoint operators $mathbb{D}_A$ on $Gltimes frak{k}$. While the kernel of $mathbb{D}_A$ is infinite-dimensional, we show that there is still a notion of finite reducibility at every point, which suggests a generalized definition of twisted K-theory for action Lie groupoids.
Following [44], we introduce the notion of families of projective operators on fibrations equipped with an Azumaya bundle $mathcal{A}$. We define and compute the index of such families using the cohomological index formula from [7]. More precisely, a family of projective operators $A$ can be pulled back in a family $tilde{A}$ of $SU(N)$-transversally elliptic operators on the $PU(N)$-principal bundle of trivialisations of $mathcal{A}$. Through the distributional index of $tilde{A}$, we can define an index for the family $A$ of projective operators and using the cohomological index formula from [7], we obtain an explicit cohomological index formula. Let $1 to Gamma to tilde{G} to G to 1$ be a central extension by an abelian finite group. As a preliminary result, we compute the index of families of $tilde{G}$-transversally elliptic operators on a $G$-principal bundle $P$.
Based on the differential graded Lie algebra controlling deformations of an $n$-Lie algebra with a representation (called an n-LieRep pair), we construct a Lie n-algebra, whose Maurer-Cartan elements characterize relative Rota-Baxter operators on n-LieRep pairs. The notion of an n-pre-Lie algebra is introduced, which is the underlying algebraic structure of the relative Rota-Baxter operator. We give the cohomology of relative Rota-Baxter operators and study infinitesimal deformations and extensions of order m deformations to order m+1 deformations of relative Rota-Baxter operators through the cohomology groups of relative Rota-Baxter operators. Moreover, we build the relation between the cohomology groups of relative Rota-Baxter operators on n-LieRep pairs and those on (n+1)-LieRep pairs by certain linear functions.
We determine what should correspond to the Dirac operator on certain quantized hermitian symmetric spaces and what its properties are. A new insight into the quantized wave operator is obtained.
In this paper, first we introduce the notion of a twisted Rota-Baxter operator on a 3-Lie algebra $g$ with a representation on $V$. We show that a twisted Rota-Baxter operator induces a 3-Lie algebra structure on $V$, which represents on $g$. By this fact, we define the cohomology of a twisted Rota-Baxter operator and study infinitesimal deformations of a twisted Rota-Baxter operator using the second cohomology group. Then we introduce the notion of an NS-3-Lie algebra, which produces a 3-Lie algebra with a representation on itself. We show that a twisted Rota-Baxter operator induces an NS-3-Lie algebra naturally. Thus NS-3-Lie algebras can be viewed as the underlying algebraic structures of twisted Rota-Baxter operators on 3-Lie algebras. Finally we show that a Nijenhuis operator on a 3-Lie algebra gives rise to a representation of the deformed 3-Lie algebra and a 2-cocycle. Consequently, the identity map will be a twisted Rota-Baxter operator on the deformed 3-Lie algebra. We also introduce the notion of a Reynolds operator on a 3-Lie algebra, which can serve as a special case of twisted Rota-Baxter operators on 3-Lie algebras.
In this paper, first we introduce the notion of a twilled 3-Lie algebra, and construct an $L_infty$-algebra, whose Maurer-Cartan elements give rise to new twilled 3-Lie algebras by twisting. In particular, we recover the Lie $3$-algebra whose Maurer-Cartan elements are O-operators (also called relative Rota-Baxter operators) on 3-Lie algebras. Then we introduce the notion of generalized matched pairs of 3-Lie algebras using generalized representations of 3-Lie algebras, which will give rise to twilled 3-Lie algebras. The usual matched pairs of 3-Lie algebras correspond to a special class of twilled 3-Lie algebras, which we call strict twilled 3-Lie algebras. Finally, we use O-operators to construct explicit twilled 3-Lie algebras, and explain why an $r$-matrix for a 3-Lie algebra can not give rise to a double construction 3-Lie bialgebra. Examples of twilled 3-Lie algebras are given to illustrate the various interesting phenomenon.