Do you want to publish a course? Click here

Directional out-coupling from active hyperbolic metamaterials

180   0   0.0 ( 0 )
 Added by Tal Galfsky
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Hyperbolic Metamaterials (HMMs) have recently garnered much attention because they possess the ability for broadband manipulation of the photon density of states and sub-wavelength light confinement. However, a major difficulty arises with the coupling of light out of HMMs due to strong confinement of the electromagnetic field in states with high momentum called high-k modes which become evanescent outside the structure. Here we report the first demonstration of directional out-coupling of light from high-k modes in an active HMM using a high index bulls-eye grating. Quantum dots (QDs) embedded underneath the metamaterial show highly directional emission through the propagation and out-coupling of resonance cones which are a unique feature of hyperbolic media. This demonstration of efficient out-coupling of light from active HMMs could pave the way for developing practical photonic devices using these systems.



rate research

Read More

Semiconductor-based layered hyperbolic metamaterials (HMMs) house high-wavevector volume plasmon polariton (VPP) modes in the infrared spectral range. VPP modes have successfully been exploited in the weak-coupling regime through the enhanced Purcell effect. In this paper, we experimentally demonstrate strong coupling between the VPP modes in a semiconductor HMM and the intersubband transition of epitaxially-embedded quantum wells. We observe clear anticrossings in the dispersion curves for the zeroth-, first-, second-, and third-order VPP modes, resulting in upper and lower polariton branches for each mode. This demonstration sets the stage for the creation of novel infrared optoelectronic structures combining HMMs with embedded epitaxial emitter or detector structures.
We propose an approach to enhance and direct the spontaneous emission from isolated emitters embedded inside hyperbolic metamaterials into single photon beams. The approach rests on collective plasmonic Bloch modes of hyperbolic metamaterials which propagate in highly directional beams called quantum resonance cones. We propose a pumping scheme using the transparency window of the hyperbolic metamaterial that occurs near the topological transition. Finally, we address the challenge of outcoupling these broadband resonance cones into vacuum using a dielectric bullseye grating. We give a detailed analysis of quenching and design the metamaterial to have a huge Purcell factor in a broad bandwidth inspite of the losses in the metal. Our work should help motivate experiments in the development of single photon sources for broadband emitters such as nitrogen vacancy centers in diamond.
We theoretically consider infrared-driven hyperbolic metamaterials able to spatially filtering terahertz radiation. The metamaterial is a slab made of alternating semiconductor and dielectric layers whose homogenized uniaxial response, at terahertz frequencies, shows principal permittivities of different signs. The gap provided by metamaterial hyperbolic dispersion allows the slab to stop spatial frequencies within a bandwidth tunable by changing the infrared radiation intensity. We numerically prove the device functionality by resorting to full wave simulation coupled to the dynamics of charge carries photoexcited by infrared radiation in semiconductor layers.
In this paper we demonstrate that asymmetric hyperbolic metamaterials (AHM) can produce strongly directive thermal emission in far-field zone, which exceeds Plancks limit. Asymmetry is inherent in an uniaxial medium, whose optical axes are tilted with respect to medium interfaces and appears as a difference in properties of waves, propagating upward and downward with respect to the interface. Its known that a high density of states (DOS) for certain photons takes place in usual hyperbolic metamaterials, but emission of them into a smaller number in vacuum is preserved by the total internal reflection. However, the use of AHM enhance the efficiency of coupling of the waves in AHM with the waves in free space that results in Super-Planckian far-field thermal emission in certain directions. Different plasmonic metamaterials can be used for realization of AHM. As example, thermal emission from AHM, based on graphene multilayer, is discussed.
Hyperbolic metamaterials (HMMs) are highly anisotropic optical materials that behave as metals or as dielectrics depending on the direction of propagation of light. They are becoming essential for a plethora of applications, ranging from aerospace to automotive, from wireless to medical and IoT. These applications often work in harsh environments or may sustain remarkable external stresses. This calls for materials that show enhanced optical properties as well as tailorable mechanical properties. Depending on their specific use, both hard and ultrasoft materials could be required, although the combination with optical hyperbolic response is rarely addressed. Here, we demonstrate the possibility to combine optical hyperbolicity and tunable mechanical properties in the same (meta)material, focusing on the case of extreme mechanical hardness. Using high-throughput calculations from first principles and effective medium theory, we explored a large class of layered materials with hyperbolic optical activity in the near-IR and visible range, and we identified a reduced number of ultrasoft and hard HMMs among more than 1800 combinations of transition metal rocksalt crystals. Once validated by the experiments, this new class of metamaterials may foster previously unexplored optical/mechanical applications.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا