Do you want to publish a course? Click here

Reconfigurable on-chip entangled sources based on lithium-niobate waveguide circuits

244   0   0.0 ( 0 )
 Added by Hua Jin
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Integrated quantum optics becomes a consequent tendency towards practical quantum information processing. Here, we report the on-chip generation and manipulation of photonic entanglement based on reconfigurable lithium niobate waveguide circuits. By introducing periodically poled structure into the waveguide interferometer, two individual photon-pair sources with controllable phase-shift are produced and cascaded by a quantum interference, resulting in a deterministically separated identical photon pair. The state is characterized by 92.9% visibility Hong-Ou-Mandel interference. Continuous morphing from two-photon separated state to bunched state is further demonstrated by on-chip control of electro-optic phase-shift. The photon flux reaches ~1.4*10^7 pairs nm-1 mW-1. Our work presents a scenario for on-chip engineering of different photon sources and paves a way to the fully integrated quantum technologies.



rate research

Read More

High-flux entangled photon source is the key resource for quantum optical study and application. Here it is realized in a lithium niobate on isolator (LNOI) chip, with 2.79*10^11 Hz/mW photon pair rate and 1.53*10^9 Hz/nm/mW spectral brightness. These data are boosted by over two orders of magnitude compared to existing technologies. A 130-nm broad bandwidth is engineered for 8-channel multiplexed energy-time entanglement. Harnessed by high-extinction frequency correlation and Franson interferences up to 99.17% visibility, such energy-time entanglement multiplexing further enhances high-flux data rate, and warrants broad applications in quantum information processing on a chip.
Lithium niobate on insulator (LNOI), as an emerging and promising optical integration platform, faces shortages of on-chip active devices including lasers and amplifiers. Here, we report the fabrication on-chip erbium-doped LNOI waveguide amplifiers based on electron beam lithography and inductively coupled plasma reactive ion etching. A net internal gain of ~30 dB/cm in communication band was achieved in the fabricated waveguide amplifiers under the pump of a 974-nm continuous laser. This work develops new active devices on LNOI and will promote the development of LNOI integrated photonics.
Integrated lithium niobate (LN) photonic circuits have recently emerged as a promising candidate for advanced photonic functions such as high-speed modulation, nonlinear frequency conversion and frequency comb generation. For practical applications, optical interfaces that feature low fiber-to-chip coupling losses are essential. So far, the fiber-to-chip loss (commonly > 10 dB) dominates the total insertion losses of typical LN photonic integrated circuits, where on-chip propagation losses can be as low as 0.03 - 0.1 dB/cm. Here we experimentally demonstrate a low-loss mode size converter for coupling between a standard lensed fiber and sub-micrometer LN rib waveguides. The coupler consists of two inverse tapers that convert the small optical mode of a rib waveguide into a symmetric guided mode of a LN nanowire, featuring a larger mode area matched to that of a tapered optical fiber. The measured fiber-to-chip coupling loss is lower than 1.7 dB/facet with high fabrication tolerance and repeatability. Our results open door for practical integrated LN photonic circuits efficiently interfaced with optical fibers.
A single photon in a strongly nonlinear cavity is able to block the transmission of the second photon, thereby converting incident coherent light into anti-bunched light, which is known as photon blockade effect. On the other hand, photon anti-pairing, where only the entry of two photons is blocked and the emission of bunches of three or more photons is allowed, is based on an unconventional photon blockade mechanism due to destructive interference of two distinct excitation pathways. We propose quantum plexcitonic systems with moderate nonlinearity to generate both anti-bunched and anti-paired photons. The proposed plexitonic systems benefit from subwavelength field localizations that make quantum emitters spatially distinguishable, thus enabling a reconfigurable photon source between anti-bunched and anti-paired states via tailoring the energy bands. For a realistic nanoprism plexitonic system, two schemes of reconfiguration are suggested: (i) the chemical means by partially changing the type of the emitters; or (ii) the optical approach by rotating the polarization angle of the incident light to tune the coupling rate of the emitters. These results pave the way to realize reconfigurable nonclassical photon sources in a simple quantum plexcitonic platform with readily accessible experimental conditions.
We propose to integrate the electro-optic tuning function into polarization-entangled photon pair generation process in a periodically poled lithium niobate (PPLN). Due to the versatility of PPLN, both the spontaneously parametric down conversion and electro-optic polarization rotation effects could be realized simultaneously. Orthogonally-polarized and parallel-polarized photon pairs thus are instantly switchable by tuning the applied field. The characteristics of the source are investigated showing adjustable bandwidths and high entanglement degrees. Moreover, other kinds of reconfigurable entanglement are also achievable based on suitable domain-design. We believe the domain engineering is a very promising solution for next generation function-integrated quantum circuits.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا