No Arabic abstract
The gradual crowding out of singleton and small team science by large team endeavors is challenging key features of research culture. It is therefore important for the future of scientific practice to reflect upon the individual scientists ethical responsibilities within teams. To facilitate this reflection we show labor force trends in the US revealing a skewed growth in academic ranks and increased levels of competition for promotion within the system; we analyze teaming trends across disciplines and national borders demonstrating why it is becoming difficult to distribute credit and to avoid conflicts of interest; and we use more than a century of Nobel prize data to show how science is outgrowing its old institutions of singleton awards. Of particular concern within the large team environment is the weakening of the mentor-mentee relation, which undermines the cultivation of virtue ethics across scientific generations. These trends and emerging organizational complexities call for a universal set of behavioral norms that transcend team heterogeneity and hierarchy. To this end, our expository analysis provides a survey of ethical issues in team settings to inform science ethics education and science policy.
In Communication Theory, intermedia agenda-setting refers to the influence that different news sources may have on each other, and how this subsequently affects the breadth of information that is presented to the public. Several studies have attempted to quantify the impact of intermedia agenda-setting in specific countries or contexts, but a large-scale, data-driven investigation is still lacking. Here, we operationalise intermedia agenda-setting by putting forward a methodology to infer networks of influence between different news sources on a given topic, and apply it on a large dataset of news articles published by globally and locally prominent news organisations in 2016. We find influence to be significantly topic-dependent, with the same news sources acting as agenda-setters (i.e., central nodes) with respect to certain topics and as followers (i.e., peripheral nodes) with respect to others. At the same time, we find that the influence networks associated with most topics exhibit small world properties, which we find to play a significant role towards the overall diversity of sentiment expressed about the topic by the news sources in the network. In particular, we find clustering and density of influence networks to act as competing forces in this respect, with the former increasing and the latter reducing diversity.
Structural inequalities persist in society, conferring systematic advantages to some people at the expense of others, for example, by giving them substantially more influence and opportunities. Using bibliometric data about authors of scientific publications, we identify two types of structural inequalities in scientific citations. First, female authors, who represent a minority of researchers, receive less recognition for their work (through citations) relative to male authors; second, authors affiliated with top-ranked institutions, who are also a minority, receive substantially more recognition compared to other authors. We present a model for the growth of directed citation networks and show that citations disparities arise from individual preferences to cite authors from the same group (homophily), highly cited or active authors (preferential attachment), as well as the size of the group and how frequently new authors join. We analyze the model and show that its predictions align well with real-world observations. Our theoretical and empirical analysis also suggests potential strategies to mitigate structural inequalities in science. In particular, we find that merely increasing the minority group size does little to narrow the disparities. Instead, reducing the homophily of each group, frequently adding new authors to a research field while providing them an accessible platform among existing, established authors, together with balanced group sizes can have the largest impact on reducing inequality. Our work highlights additional complexities of mitigating structural disparities stemming from asymmetric relations (e.g., directed citations) compared to symmetric relations (e.g., collaborations).
The application of Network Science to social systems has introduced new methodologies to analyze classical problems such as the emergence of epidemics, the arousal of cooperation between individuals or the propagation of information along social networks. More recently, the organization of football teams and their performance have been unveiled using metrics coming from Network Science, where a team is considered as a complex network whose nodes (i.e., players) interact with the aim of overcoming the opponent network. Here, we combine the use of different network metrics to extract the particular signature of the F.C. Barcelona coached by Guardiola, which has been considered one of the best teams along football history. We have first compared the network organization of Guardiolas team with their opponents along one season of the Spanish national league, identifying those metrics with statistically significant differences and relating them with the Guardiolas game. Next, we have focused on the temporal nature of football passing networks and calculated the evolution of all network properties along a match, instead of considering their average. In this way, we are able to identify those network metrics that enhance the probability of scoring/receiving a goal, showing that not all teams behave in the same way and how the organization Guardiolas F.C. Barcelona is different from the rest, including its clustering coefficient, shortest-path length, largest eigenvalue of the adjacency matrix, algebraic connectivity and centrality distribution.
The generation of novelty is central to any creative endeavor. Novelty generation and the relationship between novelty and individual hedonic value have long been subjects of study in social psychology. However, few studies have utilized large-scale datasets to quantitatively investigate these issues. Here we consider the domain of American cinema and explore these questions using a database of films spanning a 70 year period. We use crowdsourced keywords from the Internet Movie Database as a window into the contents of films, and prescribe novelty scores for each film based on occurrence probabilities of individual keywords and keyword-pairs. These scores provide revealing insights into the dynamics of novelty in cinema. We investigate how novelty influences the revenue generated by a film, and find a relationship that resembles the Wundt-Berlyne curve. We also study the statistics of keyword occurrence and the aggregate distribution of keywords over a 100 year period.
John Desmond Bernal (1901-1970) was one of the most eminent scientists in molecular biology, and also regarded as the founding father of the Science of Science. His book The Social Function of Science laid the theoretical foundations for the discipline. In this article, we summarize four chief characteristics of his ideas in the Science of Science: the socio-historical perspective, theoretical models, qualitative and quantitative approaches, and studies of science planning and policy. China has constantly reformed its scientific and technological system based on research evidence of the Science of Science. Therefore, we analyze the impact of Bernal Science-of-Science thoughts on the development of Science of Science in China, and discuss how they might be usefully taken still further in quantitative studies of science.