Do you want to publish a course? Click here

Strong out-of-plane magnetic anisotropy of Fe adatoms on Bi$_2$Te$_3$

205   0   0.0 ( 0 )
 Added by Thomas Eelbo
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The electronic and magnetic properties of individual Fe atoms adsorbed on the surface of the topological insulator Bi$_2$Te$_3$(111) are investigated. Scanning tunneling microscopy and spectroscopy prove the existence of two distinct types of Fe species, while our first-principles calculations assign them to Fe adatoms in the hcp and fcc hollow sites. The combination of x-ray magnetic circular dichroism measurements and angular dependent magnetization curves reveals out-of-plane anisotropies for both species with anisotropy constants of $K_{text{fcc}} = (10 pm 4)$ meV/atom and $K_{text{hcp}} = (8 pm 4)$ meV/atom. These values are well in line with the results of calculations.



rate research

Read More

Here we report on Landau level spectroscopy in magnetic fields up to 34 T performed on a thin film of topological insulator Bi$_2$Te$_3$ epitaxially grown on a BaF$_2$ substrate. The observed response is consistent with the picture of a direct-gap semiconductor in which charge carriers closely resemble massive Dirac particles. The fundamental band gap reaches $E_g=(175pm 5)$~meV at low temperatures and it is not located on the trigonal axis, thus displaying either six or twelvefold valley degeneracy. Notably, our magneto-optical data do not indicate any band inversion. This suggests that the fundamental band gap is relatively distant from the $Gamma$ point where profound inversion exists andgives rise to relativistic-like surface states of Bi$_2$Te$_3$.
Electrical control of magnetism of a ferromagnetic semiconductor offers exciting prospects for future spintronic devices for processing and storing information. Here, we report observation of electrically modulated magnetic phase transition and magnetic anisotropy in thin crystal of Cr$_2$Ge$_2$Te$_6$ (CGT), a layered ferromagnetic semiconductor. We show that heavily electron-doped ($sim$ $10^{14}$ cm$^{-2}$) CGT in an electric double-layer transistor device is found to exhibit hysteresis in magnetoresistance (MR), a clear signature of ferromagnetism, at temperatures up to above 200 K, which is significantly higher than the known Curie temperature of 61 K for an undoped material. Additionally, angle-dependent MR measurements reveal that the magnetic easy axis of this new ground state lies within the layer plane in stark contrast to the case of undoped CGT, whose easy axis points in the out-of-plane direction. We propose that significant doping promotes double-exchange mechanism mediated by free carriers, prevailing over the superexchange mechanism in the insulating state. Our findings highlight that electrostatic gating of this class of materials allows not only charge flow switching but also magnetic phase switching, evidencing their potential for spintronics applications.
We performed x-ray magnetic circular dichroism (XMCD) measurements on heterostructures comprising topological insulators (TIs) of the (Bi,Sb)$_2$(Se,Te)$_3$ family and the magnetic insulator EuS. XMCD measurements allow us to investigate element-selective magnetic proximity effects at the very TI/EuS interface. A systematic analysis reveals that there is neither significant induced magnetism within the TI nor an enhancement of the Eu magnetic moment at such interface. The induced magnetic moments in Bi, Sb, Te, and Se sites are lower than the estimated detection limit of the XMCD measurements of $sim!10^{-3}$ $mu_mathrm{B}$/at.
The influence of individual impurities of Fe on the electronic properties of topological insulator Bi$_2$Se$_3$ is studied by Scanning Tunneling Microscopy. The microscope tip is used in order to remotely charge/discharge Fe impurities. The charging process is shown to depend on the impurity location in the crystallographic unit cell, on the presence of other Fe impurities in the close vicinity, as well as on the overall doping level of the crystal. We present a qualitative explanation of the observed phenomena in terms of tip-induced local band bending. Our observations evidence that the specific impurity neighborhood and the position of the Fermi energy with respect to the Dirac point and bulk bands have both to be taken into account when considering the electron scattering on the disorder in topological insulators.
We study disorder induced topological phase transitions in magnetically doped (Bi, Sb)$_2$Te$_3$ thin films, by using large scale transport simulations of the conductance through a disordered region coupled to reservoirs in the quantum spin Hall regime. Besides the disorder strength, the rich phase diagram also strongly depends on the magnetic exchange field, the Fermi level, and the initial topological state in the undoped and clean limit of the films. In an initially trivial system at non-zero exchange field, varying the disorder strength can induce a sequence of transitions from a normal insulating, to a quantum anomalous Hall, then a spin-Chern insulating, and finally an Anderson insulating state. While for a system with topology initially, a similar sequence, but only starting from the quantum anomalous Hall state, can be induced. Varying the Fermi level we find a similarly rich phase diagram, including transitions from the quantum anomalous Hall to the spin-Chern insulating state via a state that behaves as a mixture of a quantum anomalous Hall and a metallic state, akin to recent experimental reports.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا