Do you want to publish a course? Click here

Collapse of the Normal State Pseudogap at a Lifshitz Transition in Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{8+delta}$ Cuprate Superconductor

143   0   0.0 ( 0 )
 Added by Alain Sacuto Pr
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report a fine tuned doping study of strongly overdoped Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ single crystals using electronic Raman scattering. Combined with theoretical calculations, we show that the doping, at which the normal state pseudogap closes, coincides with a Lifshitz quantum phase transition where the active hole-like Fermi surface becomes electron-like. This conclusion suggests that the microscopic cause of the pseudogap is sensitive to the Fermi surface topology. Furthermore, we find that the superconducting transition temperature is unaffected by this transition, demonstrating that their origins are different on the overdoped side.



rate research

Read More

Single atom manipulation within doped correlated electron systems would be highly beneficial to disentangle the influence of dopants, structural defects and crystallographic characteristics on their local electronic states. Unfortunately, their high diffusion barrier prevents conventional manipulation techniques. Here, we demonstrate the possibility to reversibly manipulate select sites in the optimally doped high temperature superconductor Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{8+x}$ using the local electric field of the tip. We show that upon shifting individual Bi atoms at the surface, the spectral gap associated with superconductivity is seen to reversibly change by as much as 15 meV (~5% of the total gap size). Our toy model that captures all observed characteristics suggests the field induces lateral movement of point-like objects that create a local pairing potential in the CuO2 plane.
Scanning Hall probe and local Hall magnetometry measurements have been used to investigate flux distributions in large mesoscopic superconducting disks with sizes that lie near the crossover between the bulk and mesoscopic vortex regimes. Results obtained by directly mapping the magnetic induction profiles of the disks at different applied fields can be quite successfully fitted to analytic models which assume a continuous distribution of flux in the sample. At low fields, however, we do observe clear signatures of the underlying discrete vortex structure and can resolve the characteristic mesoscopic compression of vortex clusters in increasing magnetic fields. Even at higher fields, where single vortex resolution is lost, we are still able to track configurational changes in the vortex patterns, since competing vortex orders impose unmistakable signatures on local magnetisation curves as a function of the applied field. Our observations are in excellent agreement with molecular dynamics numerical simulations which lead us to a natural definition of the lengthscale for the crossover between discrete and continuum behaviours in our system.
We present an extended zero-field muon spin relaxation (ZF-$mu$SR) study of overdoped Bi$_{2+x}$Sr$_{2-x}$CaCu$_2$O$_{8+delta}$ (Bi2212) single crystals, intended to elucidate the origin of weak quasistatic magnetism previously detected by $mu$SR in the superconducting and normal states of optimally-doped and overdoped samples. New results on heavily-overdoped single crystals show a similar monotonically decreasing ZF-$mu$SR relaxation rate with increasing temperature that persists above the pseudogap (PG) temperature $T^*$ and does not evolve with hole doping ($p$). Additional measurements using an ultra-low background apparatus confirm that this behavior is an intrinsic property of Bi2212, which cannot be due to magnetic order associated with the PG phase. Instead we show that the temperature-dependent relaxation rate is most likely caused by structural changes that modify the contribution of the nuclear dipole fields to the ZF-$mu$SR signal. Our results for Bi2212 emphasize the importance of not assuming the nuclear-dipole field contribution is independent of temperature in ZF-$mu$SR studies of high-temperature (high-$T_c$) cuprate superconductors, and do not support a recent $mu$SR study of YBa$_2$Cu$_3$O$_{6+x}$ that claims to detect magnetic order in the PG phase.
We study the effect of quenched disorder in the thermodynamic magnitudes entailed in the first-order vortex phase transition of the extremely layered Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{8 + delta}$ compound. We track the temperature-evolution of the enthalpy and the entropy-jump at the vortex solidification transition by means of AC local magnetic measurements. Quenched disorder is introduced to the pristine samples by means of heavy-ion irradiation with Pb and Xe producing a random columnar-track pins distribution with different densities (matching field $B_{Phi}$). In contrast with previous magneto-optical reports, we find that the first-order phase transition persists for samples with $B_{Phi}$ up to 100,Gauss. For very low densities of quenched disorder (pristine samples), the evolution of the thermodynamic properties can be satisfactorily explained considering a negligible effect of pinning and only electromagnetic coupling between pancake vortices lying in adjacent CuO planes. This description is not satisfactory on increasing magnitude of quenched disorder.
We report intrinsic tunnelling data for mesa structures fabricated on three over- and optimally-doped $rm{Bi_{2.15}Sr_{1.85}CaCu_{2}O_{8+delta}}$ crystals with transition temperatures of 86-78~K and 0.16-0.19~holes per CuO$_2$ unit, for a wide range of temperature ($T$) and applied magnetic field ($H$), primarily focusing on one over-doped crystal(OD80). The differential conductance above the gap edge shows clear dip structure which is highly suggestive of strong coupling to a narrow boson mode. Data below the gap edge suggest that tunnelling is weaker near the nodes of the d-wave gap and give clear evidence for strong $T$-dependent pair breaking. These findings could help theorists make a detailed Eliashberg analysis and thereby contribute towards understanding the pairing mechanism. We show that for our OD80 crystal the gap above $T_c$ although large, is reasonably consistent with the theory of superconducting fluctuations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا