No Arabic abstract
We investigated experimentally the ray-wave correspondence in organic microlasers of various triangular shapes. Triangular billiards are of interest since they are the simplest cases of polygonal billiards and the existence and properties of periodic orbits in triangles are not yet fully understood. The microlasers with symmetric shapes that were investigated exhibited states localized on simple periodic orbits, and their lasing characteristics like spectra and far-field distributions could be well explained by the properties of the periodic orbits. Furthermore, asymmetric triangles that do not feature simple periodic orbits were studied. Their lasing properties were found to be more complicated and could not be explained by periodic orbits.
Cuboid-shaped organic microcavities containing a pyrromethene laser dye and supported upon a photonic crystal have been investigated as an approach to reducing the lasing threshold of the cavities. Multiphoton lithography facilitated fabrication of the cuboid cavities directly on the substrate or on the decoupling structure, while similar structures were fabricated on the substrate by UV lithography for comparison. Significant reduction of the lasing threshold by a factor of ~30 has been observed for cavities supported by the photonic crystal relative to those fabricated on the substrate. The lasing mode spectra of the cuboid microresonators provide strong evidence showing that the lasing modes are localized in the horizontal plane, with the shape of an inscribed diamond.
We investigate experimentally and theoretically the lasing behavior of dielectric microcavity lasers with chaotic ray dynamics. Experiments show multimode lasing for both D-shaped and stadium-shaped wave-chaotic cavities. Theoretical calculations also find multimode lasing for different shapes, sizes and refractive indices. While there are quantitative differences between the theoretical lasing spectra of the stadium and D-cavity, due to the presence of scarred modes with anomalously high quality factors, these differences decrease as the system size increases, and are also substantially reduced when the effects of surface roughness are taken into account. Lasing spectra calculations are based on Steady-State Ab Initio Laser Theory, and indicate that gain competition is not sufficient to result in single-mode lasing in these systems.
The emission from open cavities with non-integrable features remains a challenging problem of practical as well as fundamental relevance. Square-shaped dielectric microcavities provide a favorable case study with generic implications for other polygonal resonators. We report on a joint experimental and theoretical study of square-shaped organic microlasers exhibiting a far-field emission that is strongly concentrated in the directions parallel to the side walls of the cavity. A semiclassical model for the far-field distributions is developed that is in agreement with even fine features of the experimental findings. Comparison of the model calculations with the experimental data allows the precise identification of the lasing modes and their emission mechanisms, providing strong support for a physically intuitive ray-dynamical interpretation. Special attention is paid to the role of diffraction and the finite side length.
We measured the far-field emission patterns in three dimensions of flat organic dye microlasers using a solid angle scanner. Polymer-based microcavities of ribbon shape (i.e., Fabry-Perot type) were investigated. Out of plane emission from the cavities was observed, with significant differences for the two cases of resonators either fully supported by the substrate or sustained by a pedestal. In both cases, the emission diagrams are accounted for by a model combining diffraction at the cavity edges and reflections from the substrate.
We present experimental and numerical studies of broad-area semiconductor lasers with chaotic ray dynamics. The emission intensity distributions at the cavity boundaries are measured and compared to ray tracing simulations and numerical calculations of the passive cavity modes. We study two different cavity geometries, a D-cavity and a stadium, both of which feature fully chaotic ray dynamics. While the far-field distributions exhibit fairly homogeneous emission in all directions, the emission intensity distributions at the cavity boundary are highly inhomogeneous, reflecting the non-uniform intensity distributions inside the cavities. The excellent agreement between experiments and simulations demonstrates that the intensity distributions of wave-chaotic semiconductor lasers are primarily determined by the cavity geometry. This is in contrast to conventional Fabry-Perot broad-area lasers for which the intensity distributions are to a large degree determined by the nonlinear interaction of the lasing modes with the semiconductor gain medium.