Do you want to publish a course? Click here

Three-dimensional emission from organic Fabry-Perot microlasers

256   0   0.0 ( 0 )
 Added by Stefan Bittner
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We measured the far-field emission patterns in three dimensions of flat organic dye microlasers using a solid angle scanner. Polymer-based microcavities of ribbon shape (i.e., Fabry-Perot type) were investigated. Out of plane emission from the cavities was observed, with significant differences for the two cases of resonators either fully supported by the substrate or sustained by a pedestal. In both cases, the emission diagrams are accounted for by a model combining diffraction at the cavity edges and reflections from the substrate.



rate research

Read More

The emission from open cavities with non-integrable features remains a challenging problem of practical as well as fundamental relevance. Square-shaped dielectric microcavities provide a favorable case study with generic implications for other polygonal resonators. We report on a joint experimental and theoretical study of square-shaped organic microlasers exhibiting a far-field emission that is strongly concentrated in the directions parallel to the side walls of the cavity. A semiclassical model for the far-field distributions is developed that is in agreement with even fine features of the experimental findings. Comparison of the model calculations with the experimental data allows the precise identification of the lasing modes and their emission mechanisms, providing strong support for a physically intuitive ray-dynamical interpretation. Special attention is paid to the role of diffraction and the finite side length.
Cuboid-shaped organic microcavities containing a pyrromethene laser dye and supported upon a photonic crystal have been investigated as an approach to reducing the lasing threshold of the cavities. Multiphoton lithography facilitated fabrication of the cuboid cavities directly on the substrate or on the decoupling structure, while similar structures were fabricated on the substrate by UV lithography for comparison. Significant reduction of the lasing threshold by a factor of ~30 has been observed for cavities supported by the photonic crystal relative to those fabricated on the substrate. The lasing mode spectra of the cuboid microresonators provide strong evidence showing that the lasing modes are localized in the horizontal plane, with the shape of an inscribed diamond.
We investigated experimentally the ray-wave correspondence in organic microlasers of various triangular shapes. Triangular billiards are of interest since they are the simplest cases of polygonal billiards and the existence and properties of periodic orbits in triangles are not yet fully understood. The microlasers with symmetric shapes that were investigated exhibited states localized on simple periodic orbits, and their lasing characteristics like spectra and far-field distributions could be well explained by the properties of the periodic orbits. Furthermore, asymmetric triangles that do not feature simple periodic orbits were studied. Their lasing properties were found to be more complicated and could not be explained by periodic orbits.
We report on experiments with deformed polymer microlasers that have a low refractive index and exhibit unidirectional light emission. We demonstrate that the highly directional emission is due to transport of light rays along the unstable manifold of the chaotic saddle in phase space. Experiments, ray-tracing simulations, and mode calculations show very good agreement.
We demonstrate the optical coupling of two cavities without light transmission through a substrate. Compared to a conventional coupling component, that is a partially transmissive mirror, an all-reflective coupler avoids light absorption in the substrate and therefore associated thermal problems, and even allows the use of opaque materials with possibly favourable mechanical and thermal properties. Recently, the all-reflective coupling of two cavities with a low-efficiency 3-port diffraction grating was theoretically investigated. Such a grating has an additional (a third) port. However, it was shown that the additional port does not necessarily decrease the bandwidth of the coupled cavities. Such an all-reflective scheme for cavity coupling is of interest in the field of gravitational wave detection. In such detectors light that is resonantly enhanced inside the so-called power-recycling cavity is coupled to (kilometre-scale) Fabry-Perot resonators representing the arms of a Michelson interferometer. In order to achieve a high sensitivity over a broad spectrum, the Fabry-Perot resonators need to have a high bandwidth for a given (high) power build-up. We realized such an all-reflective coupling in a table-top experiment. Our findings are in full agreement with the theoretical model incorporating the characteristics of the 3-port grating used, and therefore encourage the application of all-reflective cavity couplers in future gravitational wave detectors.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا