Do you want to publish a course? Click here

Second Quantized Scalar QED in Homogeneous Time-Dependent Electromagnetic Fields

214   0   0.0 ( 0 )
 Added by Sang Pyo Kim
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We formulate the second quantization of a charged scalar field in homogeneous, time-dependent electromagnetic fields, in which the Hamiltonian is an infinite system of decoupled, time-dependent oscillators for electric fields, but it is another infinite system of coupled, time-dependent oscillators for magnetic fields. We then employ the quantum invariant method to find various quantum states for the charged field. For time-dependent electric fields, a pair of quantum invariant operators for each oscillator with the given momentum plays the role of the time-dependent annihilation and the creation operators, constructs the exact quantum states, and gives the vacuum persistence amplitude as well as the pair-production rate. We also find the quantum invariants for the coupled oscillators for the charged field in time-dependent magnetic fields and advance a perturbation method when the magnetic fields change adiabatically. Finally, the quantum state and the pair production are discussed when a time-dependent electric field is present in parallel to the magnetic field.



rate research

Read More

184 - Sang Pyo Kim 2008
Strong QED has attracted attention recently partly because many astrophysical phenomena have been observed to involve electromagnetic fields beyond the critical strength for electron-positron pair production and partly because terrestrial experiments will generate electromagnetic fields above or near the critical strength in the near future. In this talk we critically review QED phenomena involving strong external electromagnetic fields. Strong QED is characterized by vacuum polarization due to quantum fluctuations and pair production due to the vacuum instability. A canonical method is elaborated for pair production at zero or finite temperature by inhomogeneous electric fields. An algorithm is advanced to calculate pair production rate for electric fields acting for finite periods of time or localized in space or oscillating electric fields. Finally, strong QED is discussed in astrophysics, in particular, strange stars.
A review of various aspects of superstrings in background electromagnetic fields is presented. Topics covered include the Born-Infeld action, spectrum of open strings in background gauge fields, the Schwinger mechanism, finite-temperature formalism and Hagedorn behaviour in external fields, Debye screening, D-brane scattering, thermodynamics of D-branes, and noncommutative field and string theories on D-branes. The electric field instabilities are emphasized throughout and contrasted with the case of magnetic fields. A new derivation of the velocity-dependent potential between moving D-branes is presented, as is a new result for the velocity corrections to the one-loop thermal effective potential.
137 - Nakwoo Kim 2014
We consider scalar fields which are coupled to Einstein gravity with a negative cosmological constant, and construct periodic solutions perturbatively. In particular, we study tachyonic scalar fields whose mass is at or above the Breitenlohner-Freedman bound in four, five, and seven spacetime dimensions. The critical amplitude of the leading order perturbation, for which the perturbative expansion breaks down, increases as we consider less massive fields. We present various examples including a model with a self-interacting scalar field which is derived from a consistent truncation of IIB supergravity.
Quantization of electromagnetic fields is investigated in the framework of stochastic variational method (SVM). Differently from the canonical quantization, this method does not require canonical form and quantization can be performed directly from the gauge invariant Lagrangian. The gauge condition is used to choose dynamically independent variables. We verify that, in the Coulomb gauge condition, SVM result is completely equivalent to the traditional result. On the other hand, in the Lorentz gauge condition, SVM quantization can be performed without introducing the indefinite metric. The temporal and longitudinal components of the gauge filed, then, behave as c-number functionals affected by quantum fluctuation through the interaction with charged matter fields. To see further the relation between SVM and the canonical quantization, we quantize the usual gauge Lagrangian with the Fermi term and argue a stochastic process with a negative second order correlation is introduced to reproduce the indefinite metric.
246 - Sang Pyo Kim 2009
We find the Bogoliubov coefficient from the tunneling boundary condition on a charged particle coupled to a static electric field $E_0 sech^2 (z/L)$ and, using the regularization scheme in Phys. Rev. D 78, 105013 (2008), obtain the exact one-loop effective action in scalar and spinor QED. It is shown that the effective action satisfies the general relation between the vacuum persistence and the mean number of produced pairs. We advance an approximation method for general electric fields and show the duality between the space-dependent and time-dependent electric fields of the same form at the leading order of the effective actions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا