Do you want to publish a course? Click here

Why stellar feedback promotes disc formation in simulated galaxies

105   0   0.0 ( 0 )
 Added by Hannah \\\"Ubler
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study how feedback influences baryon infall onto galaxies using cosmological, zoom-in simulations of haloes with present mass $M_{vir}=6.9times10^{11} M_{odot}$ to $1.7times10^{12} M_{odot}$. Starting at z=4 from identical initial conditions, implementations of weak and strong stellar feedback produce bulge- and disc-dominated galaxies, respectively. Strong feedback favours disc formation: (1) because conversion of gas into stars is suppressed at early times, as required by abundance matching arguments, resulting in flat star formation histories and higher gas fractions; (2) because 50% of the stars form in situ from recycled disc gas with angular momentum only weakly related to that of the z=0 dark halo; (3) because late-time gas accretion is typically an order of magnitude stronger and has higher specific angular momentum, with recycled gas dominating over primordial infall; (4) because 25-30% of the total accreted gas is ejected entirely before z~1, removing primarily low angular momentum material which enriches the nearby inter-galactic medium. Most recycled gas roughly conserves its angular momentum, but material ejected for long times and to large radii can gain significant angular momentum before re-accretion. These processes lower galaxy formation efficiency in addition to promoting disc formation.



rate research

Read More

We explore the chemical distribution of stars in a simulated galaxy. Using simulations of the same initial conditions but with two different feedback schemes (MUGS and MaGICC), we examine the features of the age-metallicity relation (AMR), and the three-dimensional age-metallicity-[O/Fe] distribution, both for the galaxy as a whole and decomposed into disc, bulge, halo, and satellites. The MUGS simulation, which uses traditional supernova feedback, is replete with chemical substructure. This sub- structure is absent from the MaGICC simulation, which includes early feedback from stellar winds, a modified IMF and more efficient feedback. The reduced amount of substructure is due to the almost complete lack of satellites in MaGICC. We identify a significant separation between the bulge and disc AMRs, where the bulge is considerably more metal-rich with a smaller spread in metallicity at any given time than the disc. Our results suggest, however, that identifying the substructure in observations will require exquisite age resolution, on the order of 0.25 Gyr. Certain satellites show exotic features in the AMR, even forming a sawtooth shape of increasing metallicity followed by sharp declines which correspond to pericentric passages. This fact, along with the large spread in stellar age at a given metallicity, compromises the use of metallicity as an age indicator, although alpha abundance provides a more robust clock at early times. This may also impact algorithms that are used to reconstruct star formation histories from resolved stellar populations, which frequently assume a monotonically-increasing AMR.
Using 22 hydrodynamical simulated galaxies in a LCDM cosmological context we recover not only the observed baryonic Tully-Fisher relation, but also the observed mass discrepancy--acceleration relation, which reflects the distribution of the main components of the galaxies throughout their disks. This implies that the simulations, which span the range 52 < V$_{rm flat}$ < 222 km/s where V$_{rm flat}$ is the circular velocity at the flat part of the rotation curve, and match galaxy scaling relations, are able to recover the observed relations between the distributions of stars, gas and dark matter over the radial range for which we have observational rotation curve data. Furthermore, we explicitly match the observed baryonic to halo mass relation for the first time with simulated galaxies. We discuss our results in the context of the baryon cycle that is inherent in these simulations, and with regards to the effect of baryonic processes on the distribution of dark matter.
Galaxy merger histories correlate strongly with stellar mass, largely regardless of morphology. Thus, at fixed stellar mass, spheroids and discs share similar assembly histories, both in terms of the frequency of mergers and the distribution of their mass ratios. Since mergers are the principal drivers of disc-to-spheroid morphological transformation, and the most massive galaxies typically have the richest merger histories, it is surprising that discs exist at all at the highest stellar masses (e.g. beyond the knee of the mass function). Using Horizon-AGN, a cosmological hydro-dynamical simulation, we show that extremely massive (M*> 10^11.4 MSun) discs are created via two channels. In the primary channel (accounting for ~70% of these systems and ~8% of massive galaxies) the most recent, significant merger (stellar mass ratio > 1:10) between a massive spheroid and a gas-rich satellite `spins up the spheroid by creating a new rotational stellar component, leaving a massive disc as the remnant. In the secondary channel (accounting for ~30% of these systems and ~3% of massive galaxies), a system maintains a disc throughout its lifetime, due to an anomalously quiet merger history. Not unexpectedly, the fraction of massive discs is larger at higher redshift, due to the Universe being more gas-rich. The morphological mix of galaxies at the highest stellar masses is, therefore, a strong function of the gas fraction of the Universe. Finally, these massive discs have similar black-hole masses and accretion rates to massive spheroids, providing a natural explanation for why a minority of powerful AGN are surprisingly found in disc galaxies.
611 - A. Rahimi 2009
We analyse the kinematics and chemistry of the bulge stars of two simulated disc galaxies using our chemodynamical galaxy evolution code GCD+. First we compare stars that are born inside the galaxy with those that are born outside the galaxy and are accreted into the centre of the galaxy. Stars that originate outside of the bulge are accreted into it early in its formation within 3 Gyrs so that these stars have high [alpha/Fe] as well as having a high total energy reflecting their accretion to the centre of the galaxy. Therefore, higher total energy is a good indicator for finding accreted stars. The bulges of the simulated galaxies formed through multiple mergers separated by about a Gyr. Since [alpha/Fe] is sensitive to the first few Gyrs of star formation history, stars that formed during mergers at different epochs show different [alpha/Fe]. We show that the [Mg/Fe] against star formation time relation can be very useful to identify a multiple merger bulge formation scenario, provided there is sufficiently good age information available. Our simulations also show that stars formed during one of the merger events retain a systematically prograde rotation at the final time. This demonstrates that the orbit of the ancient merger that helped to form the bulge could still remain in the kinematics of bulge stars.
We study the relation between stellar ages and vertical velocity dispersion (the age-velocity relation, or AVR) in a sample of seven simulated disc galaxies. In our simulations, the shape of the AVR for stars younger than 9 Gyr depends strongly on the merger history at low redshift, with even 1:10 - 1:15 mergers being able to create jumps in the AVR (although these jumps might not be detectable if the errors on stellar ages are on the order of 30%). For galaxies with a quiescent history at low redshift, we find that the vertical velocity dispersion rises smoothly for ages up to 8-9 Gyr, following a power law with a slope of ~0.5, similar to what is observed in the solar neighbourhood by the Geneva-Copenhagen Survey. For these galaxies, we show that the slope of the AVR is not imprinted at birth, but is the result of subsequent heating. By contrast, in all our simulations, the oldest stars form a significantly different population, with a high velocity dispersion. These stars are usually born kinematically hot in a turbulent phase of intense mergers at high redshift, and also include some stars accreted from satellites. This maximum in velocity dispersion is strongly decreased when age errors are included, suggesting that observations can easily miss such a jump with the current accuracy of age measurements.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا