Do you want to publish a course? Click here

On $3$-dimensional $left(varepsilon right)$-para Sasakian manifold

111   0   0.0 ( 0 )
 Added by Punam Gupta Dr.
 Publication date 2014
  fields
and research's language is English
 Authors Punam Gupta




Ask ChatGPT about the research

The purpose of the present paper is to study the globally and locally $varphi $-${cal T}$-symmetric $left( varepsilon right) $-para Sasakian manifold in dimension $3$. The globally $varphi $-$ {cal T}$-symmetric $3$-dimensional $left( varepsilon right) $-para Sasakian manifold is either Einstein manifold or has a constant scalar curvature. The necessary and sufficient condition for Einstein manifold to be globally $varphi $-${cal T}$ -symmetric is given. A $3$-dimensional $% left( varepsilon right) $ -para Sasakian manifold is locally $varphi $-$ {cal T}$-symmetric if and only if the scalar curvature $r$ is constant. A $3 $-dimensional $left( varepsilon right) $-para Sasakian manifold with $% eta $-parallel Ricci tensor is locally $varphi $-${cal T}$-symmetric. In the last, an example of $3$-dimensional locally $varphi $-${cal T}$-symmetric $left( varepsilon right) $-para Sasakian manifold is given.



rate research

Read More

Einstein like $(varepsilon)$-para Sasakian manifolds are introduced. For an $(varepsilon) $-para Sasakian manifold to be Einstein like, a necessary and sufficient condition in terms of its curvature tensor is obtained. The scalar curvature of an Einstein like $(varepsilon) $-para Sasakian manifold is obtained and it is shown that the scalar curvature in this case must satisfy certain differential equation. A necessary and sufficient condition for an $(varepsilon) $-almost paracontact metric hypersurface of an indefinite locally Riemannian product manifold to be $(varepsilon) $-para Sasakian is obtained and it is proved that the $(varepsilon) $-para Sasakian hypersurface of an indefinite locally Riemannian product manifold of almost constant curvature is always Einstein like.
199 - Gil Bor , Howard Jacobowitz 2019
The systematic study of CR manifolds originated in two pioneering 1932 papers of Elie Cartan. In the first, Cartan classifies all homogeneous CR 3-manifolds, the most well-known case of which is a one-parameter family of left-invariant CR structures on $mathrm{SU}_2 = S^3$, deforming the standard `spherical structure. In this paper, mostly expository, we illustrate and clarify Cartans results and methods by providing detailed classification results in modern language for four 3-dimensional Lie groups. In particular, we find that $mathrm{SL}_2(mathbb{R})$ admits two one-parameter families of left-invariant CR structures, called the elliptic and hyperbolic families, characterized by the incidence of the contact distribution with the null cone of the Killing metric. Low dimensional complex representations of $mathrm{SL}_2(mathbb{R})$ provide CR embedding or immersions of these structures. The same methods apply to all other three-dimensional Lie groups and are illustrated by descriptions of the left-invariant CR structures for $mathrm{SU}_2$, the Heisenberg group, and the Euclidean group.
97 - Vicente Mu~noz 2020
We give the first example of a simply connected compact 5-manifold (Smale-Barden manifold) which admits a K-contact structure but does not admit any Sasakian structure, settling a long standing question of Boyer and Galicki.
We construct the first example of a 5-dimensional simply connected compact manifold that admits a K-contact structure but does not admit a semi-regular Sasakian structure. For this, we need two ingredients: (a) to construct a suitable simply connected symplectic 4-manifold with disjoint symplectic surfaces spanning the homology, all of them but one of genus 1 and the other of genus g>1, (b) to prove a bound on the second Betti number $b_2$ of an algebraic surface with $b_1=0$ and having disjoint complex curves spanning the homology when all of them but one are of genus 1 and the other of genus g>1.
We study a natural contact instanton (CI) equation on gauge fields over 7-dimensional Sasakian manifolds, which is closely related both to the transverse Hermitian Yang-Mills (tHYM) condition and the G_2-instanton equation. We obtain, by Fredholm theory, a finite-dimensional local model for the moduli space of irreducible solutions. We derive cohomological conditions for smoothness, and we express its dimension in terms of the index of a transverse elliptic operator. Finally we show that the moduli space of selfdual contact instantons (ASDI) is Kahler, in the Sasakian case. As an instance of concrete interest, we specialise to transversely holomorphic Sasakian bundles over contact Calabi-Yau 7-manifolds, and we show that, in this context, the notions of contact instanton, integrable G_2-instanton and HYM connection coincide.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا