No Arabic abstract
We construct the first example of a 5-dimensional simply connected compact manifold that admits a K-contact structure but does not admit a semi-regular Sasakian structure. For this, we need two ingredients: (a) to construct a suitable simply connected symplectic 4-manifold with disjoint symplectic surfaces spanning the homology, all of them but one of genus 1 and the other of genus g>1, (b) to prove a bound on the second Betti number $b_2$ of an algebraic surface with $b_1=0$ and having disjoint complex curves spanning the homology when all of them but one are of genus 1 and the other of genus g>1.
We study several questions on the existence of negative Sasakian structures on simply connected rational homology spheres and on Smale-Barden manifolds of the form $#_k(S^2times S^3)$. First, we prove that any simply connected rational homology sphere admitting positive Sasakian structures also admits a negative one. This result answers the question, posed by Boyer and Galicki in their book [BG], of determining which simply connected rational homology spheres admit both negative and positive Sasakian structures. Second, we prove that the connected sum $#_k(S^2times S^3)$ admits negative quasi-regular Sasakian structures for any $k$. This yields a complete answer to another question posed in [BG].
We give the first example of a simply connected compact 5-manifold (Smale-Barden manifold) which admits a K-contact structure but does not admit any Sasakian structure, settling a long standing question of Boyer and Galicki.
Smale-Barden manifolds are simply-connected closed 5-manifolds. It is an important and difficult question to decide when a Smale-Barden manifold admits a Sasakian or a K-contact structure. The known constructions of Sasakian and K-contact structures are obtained mainly by two techniques. These are either links (Boyer and Galicki), or semi-regular Seifert fibrations over smooth orbifolds (Kollar). Recently, the second named author of this article started the systematic development of quasi-regular Seifert fibrations, that is, over orbifolds which are not necessarily smooth. The present work is devoted to several applications of this theory. First, we develop constructions of a Smale-Barden manifold admitting a quasi-regular Sasakian structure but not a semi-regular K-contact structure. Second, we determine all Smale-Barden manifolds that admit a null Sasakian structure. Finally, we show a counterexample in the realm of cyclic Kahler orbifolds to the algebro-geometric conjecture that claims that for an algebraic surface with $b_1=0$ and $b_2>1$ there cannot be $b_2$ smooth disjoint complex curves of genus g>0 spanning the (rational) homology.
A compact complex manifold $V$ is called Vaisman if it admits an Hermitian metric which is conformal to a Kahler one, and a non-isometric conformal action by $mathbb C$. It is called quasi-regular if the $mathbb C$-action has closed orbits. In this case the corresponding leaf space is a projective orbifold, called the quasi-regular quotient of $V$. It is known that the set of all quasi-regular Vaisman complex structures is dense in the appropriate deformation space. We count the number of closed elliptic curves on a Vaisman manifold, proving that their number is either infinite or equal to the sum of all Betti numbers of a Kahler orbifold obtained as a quasi-regular quotient of $V$. We also give a new proof of a result by Rukimbira showing that the number of Reeb orbits on a Sasakian manifold $M$ is either infinite or equal to the sum of all Betti numbers of a Kahler orbifold obtained as an $S^1$-quotient of $M$.
A Jacobi structure $J$ on a line bundle $Lto M$ is weakly regular if the sharp map $J^sharp : J^1 L to DL$ has constant rank. A generalized contact bundle with regular Jacobi structure possess a transverse complex structure. Paralleling the work of Bailey in generalized complex geometry, we find condition on a pair consisting of a regular Jacobi structure and an transverse complex structure to come from a generalized contact structure. In this way we are able to construct interesting examples of generalized contact bundles. As applications: 1) we prove that every 5-dimensional nilmanifold is equipped with an invariant generalized contact structure, 2) we show that, unlike the generalized complex case, all contact bundles over a complex manifold possess a compatible generalized contact structure. Finally we provide a counterexample presenting a locally conformal symplectic bundle over a generalized contact manifold of complex type that do not possess a compatible generalized contact structure.