Do you want to publish a course? Click here

The Mt John University Observatory Search For Earth-mass Planets In The Habitable Zone Of Alpha Centauri

117   0   0.0 ( 0 )
 Added by Michael Endl
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The holy grail in planet hunting is the detection of an Earth-analog: a planet with similar mass as the Earth and an orbit inside the habitable zone. If we can find such an Earth-analog around one of the stars in the immediate solar neighborhood, we could potentially even study it in such great detail to address the question of its potential habitability. Several groups have focused their planet detection efforts on the nearest stars. Our team is currently performing an intensive observing campaign on the alpha Centauri system using the Hercules spectrograph at the 1-m McLellan telescope at Mt John University Observatory (MJUO) in New Zealand. The goal of our project is to obtain such a large number of radial velocity measurements with sufficiently high temporal sampling to become sensitive to signals of Earth-mass planets in the habitable zones of the two stars in this binary system. Over the past years, we have collected more than 45,000 spectra for both stars combined. These data are currently processed by an advanced version of our radial velocity reduction pipeline, which eliminates the effect of spectral cross-contamination. Here we present simulations of the expected detection sensitivity to low-mass planets in the habitable zone by the Hercules program for various noise levels. We also discuss our expected sensitivity to the purported Earth-mass planet in an 3.24-d orbit announced by Dumusque et al.~(2012).



rate research

Read More

95 - K. Wagner , A. Boehle , P. Pathak 2021
Giant exoplanets on wide orbits have been directly imaged around young stars. If the thermal background in the mid-infrared can be mitigated, then exoplanets with lower masses can also be imaged. Here we present a ground-based mid-infrared observing approach that enables imaging low-mass temperate exoplanets around nearby stars, and in particular within the closest stellar system, Alpha Centauri. Based on 75-80% of the best quality images from 100 hours of cumulative observations, we demonstrate sensitivity to warm sub-Neptune-sized planets throughout much of the habitable zone of Alpha Centauri A. This is an order of magnitude more sensitive than state-of-the-art exoplanet imaging mass detection limits. We also discuss a possible exoplanet or exozodiacal disk detection around Alpha Centauri A. However, an instrumental artifact of unknown origin cannot be ruled out. These results demonstrate the feasibility of imaging rocky habitable-zone exoplanets with current and upcoming telescopes.
Results from exoplanet surveys indicate that small planets (super-Earth size and below) are abundant in our Galaxy. However, little is known about their interiors and atmospheres. There is therefore a need to find small planets transiting bright stars, which would enable a detailed characterisation of this population of objects. We present the results of a search for the transit of the Earth-mass exoplanet Alpha Centauri Bb with the Hubble Space Telescope (HST). We observed Alpha Centauri B twice in 2013 and 2014 for a total of 40 hours. We achieve a precision of 115 ppm per 6-s exposure time in a highly-saturated regime, which is found to be consistent across HST orbits. We rule out the transiting nature of Alpha Centauri Bb with the orbital parameters published in the literature at 96.6% confidence. We find in our data a single transit-like event that could be associated to another Earth-size planet in the system, on a longer period orbit. Our program demonstrates the ability of HST to obtain consistent, high-precision photometry of saturated stars over 26 hours of continuous observations.
Seven temperate Earth-sized exoplanets readily amenable for atmospheric studies transit the nearby ultracool dwarf star TRAPPIST-1 (refs 1,2). Their atmospheric regime is unknown and could range from extended primordial hydrogen-dominated to depleted atmospheres (refs 3-6). Hydrogen in particular is a powerful greenhouse gas that may prevent the habitability of inner planets while enabling the habitability of outer ones (refs 6-8). An atmosphere largely dominated by hydrogen, if cloud-free, should yield prominent spectroscopic signatures in the near-infrared detectable during transits. Observations of the innermost planets have ruled out such signatures (ref 9). However, the outermost planets are more likely to have sustained such a Neptune-like atmosphere (refs 10,11). Here, we report observations for the four planets within or near the systems habitable zone, the circumstellar region where liquid water could exist on a planetary surface (refs 12-14). These planets do not exhibit prominent spectroscopic signatures at near-infrared wavelengths either, which rules out cloud-free hydrogen-dominated atmospheres for TRAPPIST-1 d, e and f, with significance of 8, 6 and 4 sigma, respectively. Such an atmosphere is instead not excluded for planet g. As high-altitude clouds and hazes are not expected in hydrogen-dominated atmospheres around planets with such insolation (refs 15,16), these observations further support their terrestrial and potentially habitable nature.
The Kepler-1647 is a binary system with two Sun-type stars (approximately 1.22 and 0.97 Solar mass). It has the most massive circumbinary planet (1.52 Jupiter mass) with the longest orbital period (1,107.6 days) detected by the Kepler probe and is located within the habitable zone (HZ) of the system. In this work, we investigated the ability to form and house an Earth-sized planet within its HZ. First, we computed the limits of its HZ and performed numerical stability tests within that region. We found that HZ has three sub-regions that show stability, one internal, one co-orbital, and external to the host planet Kepler-1647b. Within the limits of these three regions, we performed numerical simulations of planetary formation. In the regions inner and outer to the planet, we used two different density profiles to explore different conditions of formation. In the co-orbital region, we used eight different values of total disc mass. We showed that many resonances are located within regions causing much of the disc material to be ejected before a planet is formed. Thus, the system might have two asteroid belts with Kirkwood gaps, similar to the Solar Systems main belt of asteroids. The co-orbital region proved to be extremely sensitive, not allowing the planet formation, but showing that this binary system has the capacity to have Trojan bodies. Finally, we looked for regions of stability for an Earth-sized moon. We found that there is stability for a moon with this mass up to 0.4 Hills radius from the host planet.
As a contribution to the study of the habitability of extrasolar planets, we implemented a 1-D Energy Balance Model (EBM), the simplest seasonal model of planetary climate, with new prescriptions for most physical quantities. Here we apply our EBM to investigate the surface habitability of planets with an Earth-like atmospheric composition but different levels of surface pressure. The habitability, defined as the mean fraction of the planets surface on which liquid water could exist, is estimated from the pressure-dependent liquid water temperature range, taking into account seasonal and latitudinal variations of surface temperature. By running several thousands of EBM simulations we generated a map of the habitable zone (HZ) in the plane of the orbital semi-major axis, a, and surface pressure, p, for planets in circular orbits around a Sun-like star. As pressure increases, the HZ becomes broader, with an increase of 0.25 AU in its radial extent from p=1/3 bar to p=3 bar. At low pressure, the habitability is low and varies with a; at high pressure, the habitability is high and relatively constant inside the HZ. We interpret these results in terms of the pressure dependence of the greenhouse effect, the effciency of horizontal heat transport, and the extent of the liquid water temperature range. Within the limits discussed in the paper, the results can be extended to planets in eccentric orbits around non-solar type stars. The main characteristics of the pressure-dependent HZ are modestly affected by variations of planetary properties, particularly at high pressure.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا