Do you want to publish a course? Click here

The structure of the Ricci tensor on locally homogeneous Lorentzian gradient Ricci solitons

286   0   0.0 ( 0 )
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

We describe the structure of the Ricci tensor on a locally homogeneous Lorentzian gradient Ricci soliton. In the non-steady case, we show the soliton is rigid in dimensions three and four. In the steady case, we give a complete classification in dimension three.



rate research

Read More

It is shown that locally conformally flat Lorentzian gradient Ricci solitons are locally isometric to a Robertson-Walker warped product, if the gradient of the potential function is non null, and to a plane wave, if the gradient of the potential function is null. The latter gradient Ricci solitons are necessarily steady.
We describe three-dimensional Lorentzian homogeneous Ricci solitons, showing that all types (i.e. shrinking, expanding and steady) exist. Moreover, all non-trivial examples have non-diagonalizable Ricci operator with one only eigenvalue.
344 - Huai-Dong Cao , Jiangtao Yu 2020
In this paper, we extend the work of Cao-Chen [9] on Bach-flat gradient Ricci solitons to classify $n$-dimensional ($nge 5$) complete $D$-flat gradient steady Ricci solitons. More precisely, we prove that any $n$-dimensional complete noncompact gradient steady Ricci soliton with vanishing $D$-tensor is either Ricci-flat, or isometric to the Bryant soliton. Furthermore, the proof extends to the shrinking case and the expanding case as well.
We show that Lorentzian manifolds whose isometry group is of dimension at least $frac{1}{2}n(n-1)+1$ are expanding, steady and shrinking Ricci solitons and steady gradient Ricci solitons. This provides examples of complete locally conformally flat and symmetric Lorentzian Ricci solitons which are not rigid.
The homogeneous affine surfaces have been classified by Opozda. They may be grouped into 3 families, which are not disjoint. The connections which arise as the Levi-Civita connection of a surface with a metric of constant Gauss curvature form one family; there are, however, two other families. For a surface in one of these other two families, we examine the Lie algebra of affine Killing vector fields and we give a complete classification of the homogeneous affine gradient Ricci solitons. The rank of the Ricci tensor plays a central role in our analysis.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا