Do you want to publish a course? Click here

The Coexistence and Decoupling of Bulk and Edge States in Disordered Two-dimensional Topological Insulators

153   0   0.0 ( 0 )
 Added by Yanyang Zhang Dr.
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the scattering and localization properties of edge and bulk states in a disordered two-dimensional topological insulator when they coexist at the same fermi energy. Due to edge-bulk backscattering (which is not prohibited emph{a priori} by topology or symmetry), Anderson disorder makes the edge and bulk states localized indistinguishably. Two methods are proposed to effectively decouple them and to restore robust transport. The first kind of decouple is from long range disorder, since edge and bulk states are well separated in $k$ space. The second one is from an edge gating, owing to the edge nature of edge states in real space. The latter can be used to electrically tune a system between an Anderson insulator and a topologically robust conductor, i.e., a realization of a topological transistor.



rate research

Read More

The edge states of a two-dimensional quantum spin Hall (QSH) insulator form a one-dimensional helical metal which is responsible for the transport property of the QSH insulator. Conceptually, such a one-dimensional helical metal can be attached to any scattering region as the usual metallic leads. We study the analytical property of the scattering matrix for such a conceptual multiterminal scattering problem in the presence of time reversal invariance. As a result, several theorems on the connectivity property of helical edge states in two-dimensional QSH systems as well as surface states of three-dimensional topological insulators are obtained. Without addressing real model details, these theorems, which are phenomenologically obtained, emphasize the general connectivity property of topological edge/surface states from the mere time reversal symmetry restriction.
We investigate topological states of two-dimensional (2D) triangular lattices with multi-orbitals. Tight-binding model calculations of a 2D triangular lattice based on $emph{p}_{x}$ and emph{p}_{y} orbitals exhibit very interesting doubly degenerate energy points at different positions ($Gamma$ and K/K$^{prime}$) in momentum space, with quadratic non-Dirac and linear Dirac band dispersions, respectively. Counterintuitively, the system shows a global topologically trivial rather than nontrivial state with consideration of spin-orbit coupling due to the destructive interference effect between the topological states at the $Gamma$ and K/K$^{prime}$ points. The topologically nontrivial state can emerge by introducing another set of triangular lattices to the system (bitriangular lattices) due to the breakdown of the interference effect. With first-principles calculations, we predict an intrinsic Chern insulating behavior (quantum anomalous Hall effect) in a family of 2D triangular lattice metal-organic framework of Co(C$_{21}$N$_{3}$H$_{15}$) (TPyB-Co) from this scheme. Our results provide a different path and theoretical guidance for the search for and design of new 2D topological quantum materials.
We investigate the emergence of anti-ferromagnetic ordering and its effect on the helical edge states in a quantum spin Hall insulator, in the presence of strong Coulomb interaction. Using dynamical mean-field theory, we show that the breakdown of lattice translational symmetry favours the formation of magnetic ordering with non-trivial spatial modulation. The onset of a non-uniform magnetization enables the coexistence of spin-ordered and topologically non-trivial states. An unambiguous signature of the persistence of the topological bulk property is the survival of bona fide edge states. We show that the penetration of the magnetic order is accompanied by the progressive reconstruction of gapless states in sub-peripherals layers, redefining the actual topological boundary within the system.
Topological effects in edge states are clearly visible on short lengths only, thus largely impeding their studies. On larger distances, one may be able to dynamically enhance topological signatures by exploiting the high mobility of edge states with respect to bulk carriers. Our work on microwave spectroscopy highlights the responses of the edges which host very mobile carriers, while bulk carriers are drastically slowed down in the gap. Though the edges are denser than expected, we establish that charge relaxation occurs on short timescales, and suggests that edge states can be addressed selectively on timescales over which bulk carriers are frozen.
The surface states in three-dimensional (3D) topological insulators (TIs) can be described by a two-dimensional (2D) continuous Dirac Hamiltonian. However, there exists the Fermion doubling problem when putting the continuous 2D Dirac equation into a lattice model. In this letter, we introduce a Wilson term with a zero bare mass into the 2D lattice model to overcome the difficulty. By comparing with a 3D Hamiltonian, we show that the modified 2D lattice model can faithfully describe the low-energy electrical and transport properties of surface states of 3D TIs. So this 2D lattice model provides a simple and cheap way to numerically simulate the surface states of 3D TI nanostructures. Based on the 2D lattice model, we also establish the wormhole effect in a TI nanowire by a magnetic field along the wire and show the surface states being robust against disorder. The proposed 2D lattice model can be extensively applied to study the various properties and effects, such as the transport properties, Hall effect, universal conductance fluctuations, localization effect, etc.. So it paves a new way to study the surface states of the 3D topological insulators.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا