Do you want to publish a course? Click here

Comparison of Sn-doped and nonstoichiometric vertical-Bridgman-grown crystals of the topological insulator Bi2Te2Se

273   0   0.0 ( 0 )
 Added by Satya Kushwaha
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

A comparative study of the properties of topological insulator Bi2Te2Se (BTS) crystals grown by the vertical Bridgeman method is described. Two defect mechanisms that create acceptor impurities to compensate for the native n-type carriers are compared: Bi excess, and light Sn doping. Both methods yield low carrier concentrations and an n-p crossover over the length of the grown crystal boules, but lower carrier concentrations and higher resistivities are obtained for the Sn-doped crystals, which reach carrier concentrations as low as 8 x 1014 cm-3. Further, the temperature dependent resistivities for the Sn-doped crystals display strongly activated behavior at high temperatures, with a characteristic energy of half the bulk band gap. The (001) cleaved Sn-doped BTS crystals display high quality Shubnikov de Haas (SdH) quantum oscillations due to the topological surface state electrons. Angle resolved photoelectron spectroscopy (ARPES) characterization shows that the Fermi energy (EF) for the Sn-doped crystals falls cleanly in the surface states with no interference from the bulk bands, that the Dirac point for the surface states lies approximately 60 meV below the top of the bulk valence band maximum, and allows for a determination of the bulk and surface state carrier concentrations as a function of Energy near EF. Electronic structure calculations that compare Bi excess and Sn dopants in BTS demonstrate that Sn acts as a special impurity, with a localized impurity band that acts as a charge buffer occurring inside the bulk band gap. We propose that the special resonant level character of Sn in BTS gives rise to the exceptionally low carrier concentrations and activated resistivities observed.



rate research

Read More

We present a study of the structural and electronic properties of highly doped topological insulator Bi2Se3 single crystals synthesized by the Bridgman method. Lattice structural characterizations by X-ray diffraction, scanning tunneling microscopy, and Raman spectroscopy confirmed the high quality of the as-grown single crystals. The topological surface states in the electronic band structure were directly re- vealed by angle-resolved photoemission spectroscopy. Transport measurements showed that the conduction was dominated by the bulk carriers and confirmed a previously observed bulk quantum Hall effect in such highly doped Bi2Se3 samples. We briefly discuss several possible strategies of reducing bulk conductance.
We report crystal growth and Raman spectroscopy characterization of pure and mixed bulk topological insulators. The series comprises of both binary and ternary tetradymite topological insulators. We analyzed in detail the Raman peaks of vibrational modes as out of plane Ag, and in plane Eg for both binary and ternary tetradymite topological insulators. Both out of plane Ag exhibit obvious atomic size dependent peak shifts and the effect is much lesser for the former than the latter. The situation is rather interesting for in plane Eg, which not only shows the shift but rather a broader hump like structure. The de convolution of the same show two clear peaks, which are understood in terms of the presence of separate in plane BiSe and BiTe modes in mixed tetradymite topological insulators. Summarily, various Raman modes of well-characterized pure and mixed topological insulator single crystals are reported and discussed in this article.
Gray tin, also known as $alpha$-Sn, can be turned into a three-dimensional topological insulator (3D-TI) by strain and finite size effects. Such room temperature 3D-TI is peculiarly interesting for spintronics due to the spin-momentum locking along the Dirac cone (linear dispersion) of the surface states. Angle resolved photoemission spectroscopy (ARPES) has been used to investigate the dispersion close to the Fermi level in thin (0,0,1)-oriented epitaxially strained films of $alpha$-Sn, for different film thicknesses as well as for different capping layers (Al, AlO$_x$ and MgO). Indeed a proper capping layer is necessary to be able to use $alpha$-Sn surface states for spintronics applications. In contrast with free surfaces or surfaces coated with Ag, coating the $alpha$-Sn surface with Al or AlO$_x$ leads to a drop of the Fermi level below the Dirac point, an important consequence for transport is the presence of bulk states at the Fermi level. $alpha$-Sn films coated by AlO$_x$ are studied by electrical magnetotransport: despite clear evidence of surface states revealed by Shubnikov-de Haas oscillations, an important part of the magneto-transport properties is governed by bulk electronic states attributed to the $Gamma 8$ band, as suggested by {it ab-initio} calculations.
148 - A. Sapkota , Y. Li , B. L. Winn 2020
We present a neutron scattering study of phonons in single crystals of (Pb$_{0.5}$Sn$_{0.5}$)$_{1-x}$In$_x$Te with $x=0$ (metallic, but nonsuperconducting) and $x=0.2$ (nonmetallic normal state, but superconducting). We map the phonon dispersions (more completely for $x=0$) and find general consistency with theoretical calculations, except for the transverse and longitudinal optical (TO and LO) modes at the Brillouin zone center. At low temperature, both modes are strongly damped but sit at a finite energy ($sim4$ meV in both samples), shifting to higher energy at room temperature. These modes are soft due to a proximate structural instability driven by the sensitivity of Pb-Te and Sn-Te $p$-orbital hybridization to off-center displacements of the metal atoms. The impact of the soft optical modes on the low-energy acoustic modes is inferred from the low thermal conductivity, especially at low temperature. Given that the strongest electron-phonon coupling is predicted for the LO mode, which should be similar for both studied compositions, it is intriguing that only the In-doped crystal is superconducting. In addition, we observe elastic diffuse (Huang) scattering that is qualitatively explained by the difference in Pb-Te and Sn-Te bond lengths within the lattice of randomly distributed Pb and Sn sites. We also confirm the presence of anomalous diffuse low-energy atomic vibrations that we speculatively attribute to local fluctuations of individual Pb atoms between off-center sites.
Topological surface states have been extensively observed via optics in thin films of topological insulators. However, in typical thick single crystals of these materials, bulk states are dominant and it is difficult for optics to verify the existence of topological surface states definitively. In this work, we studied the charge dynamics of the newly formulated bulk-insulating Sn-doped Bi$_{1.1}$Sb$_{0.9}$Te$_2$S crystal by using time-domain terahertz spectroscopy. This compound shows much better insulating behavior than any other bulk-insulating topological insulators reported previously. The transmission can be enhanced an amount which is 5$%$ of the zero-field transmission by applying magnetic field to 7 T, an effect which we believe is due to the suppression of topological surface states. This suppression is essentially independent of the thicknesses of the samples, showing the two-dimensional nature of the transport. The suppression of surface states in field allows us to use the crystal slab itself as a reference sample to extract the surface conductance, mobility, charge density and scattering rate. Our measurements set the stage for the investigation of phenomena out of the semi-classical regime, such as the topological magneto-electric effect.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا