Do you want to publish a course? Click here

High Voltage in Noble Liquids for High Energy Physics

112   0   0.0 ( 0 )
 Added by Brian Rebel
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

A workshop was held at Fermilab November 8-9, 2013 to discuss the challenges of using high voltage in noble liquids. The participants spanned the fields of neutrino, dark matter, and electric dipole moment physics. All presentations at the workshop were made in plenary sessions. This document summarizes the experiences and lessons learned from experiments in these fields at developing high voltage systems in noble liquids.



rate research

Read More

406 - Xiangyang Ju 2020
Pattern recognition problems in high energy physics are notably different from traditional machine learning applications in computer vision. Reconstruction algorithms identify and measure the kinematic properties of particles produced in high energy collisions and recorded with complex detector systems. Two critical applications are the reconstruction of charged particle trajectories in tracking detectors and the reconstruction of particle showers in calorimeters. These two problems have unique challenges and characteristics, but both have high dimensionality, high degree of sparsity, and complex geometric layouts. Graph Neural Networks (GNNs) are a relatively new class of deep learning architectures which can deal with such data effectively, allowing scientists to incorporate domain knowledge in a graph structure and learn powerful representations leveraging that structure to identify patterns of interest. In this work we demonstrate the applicability of GNNs to these two diverse particle reconstruction problems.
The MAJORANA Collaboration is constructing the MAJORANA Demonstrator, an ultra-low background, 44-kg modular high-purity Ge (HPGe) detector array to search for neutrinoless double-beta decay in Ge-76. The phenomenon of surface micro-discharge induced by high-voltage has been studied in the context of the MAJORANA Demonstrator. This effect can damage the front-end electronics or mimic detector signals. To ensure the correct performance, every high-voltage cable and feedthrough must be capable of supplying HPGe detector operating voltages as high as 5 kV without exhibiting discharge. R&D measurements were carried out to understand the testing system and determine the optimum design configuration of the high-voltage path, including different improvements of the cable layout and feedthrough flange model selection. Every cable and feedthrough to be used at the MAJORANA Demonstrator was characterized and the micro-discharge effects during the MAJORANA Demonstrator commissioning phase were studied. A stable configuration has been achieved, and the cables and connectors can supply HPGe detector operating voltages without exhibiting discharge.
A classic electrostatic induction machine, Cavallos multiplier, is suggested for in situ production of very high voltage in cryogenic environments. The device is suitable for generating a large electrostatic field under conditions of very small load current. Operation of the Cavallo multiplier is analyzed, with quantitative description in terms of mutual capacitances between electrodes in the system. A demonstration apparatus was constructed, and measured voltages are compared to predictions based on measured capacitances in the system. The simplicity of the Cavallo multiplier makes it amenable to electrostatic analysis using finite element software, and electrode shapes can be optimized to take advantage of a high dielectric strength medium such as liquid helium. A design study is presented for a Cavallo multiplier in a large-scale, cryogenic experiment to measure the neutron electric dipole moment.
62 - R. Aaij , S. Amato , L. Anderlini 2016
Upgrades to the LHCb computing infrastructure in the first long shutdown of the LHC have allowed for high quality decay information to be calculated by the software trigger making a separate offline event reconstruction unnecessary. Furthermore, the storage space of the triggered candidate is an order of magnitude smaller than the entire raw event that would otherwise need to be persisted. Tesla, following the LHCb renowned physicist naming convention, is an application designed to process the information calculated by the trigger, with the resulting output used to directly perform physics measurements.
59 - M. Evans , B. Foy , D. Mager 2017
A robust and portable power supply has been developed specifically for charging linear transformer drivers, a modern incarnation of fast pulsed power generators. It is capable of generator +100 kV and -100 kV at 1 mA, while withstanding the large voltage spikes generated when the pulsed-power generator is triggered. The three-stage design combines a zero-voltage switching circuit, a step-up transformer using ferrite cores, and a dual Cockcroft-Walton voltage multiplier. The zero-voltage switching circuit drives the primary of the transformer in parallel with a capacitor. With this driver, the tank circuit naturally remain in its resonant state, allowing for maximum energy coupling between the zero-voltage switching circuit and the Cockcroft-Walton voltage multiplier across a wide range of loading conditions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا