Do you want to publish a course? Click here

Spectral edge mode in interacting one-dimensional systems

113   0   0.0 ( 0 )
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

A continuum of excitations in interacting one-dimensional systems is bounded from below by a spectral edge that marks the lowest possible excitation energy for a given momentum. We analyse short-range interactions between Fermi particles and between Bose particles (with and without spin) using Bethe-Ansatz techniques and find that the dispersions of the corresponding spectral edge modes are close to a parabola in all cases. Based on this emergent phenomenon we propose an empirical model of a free, non-relativistic particle with an effective mass identified at low energies as the bare electron mass renormalised by the dimensionless Luttinger parameter $K$ (or $K_sigma$ for particles with spin). The relevance of the Luttinger parameters beyond the low energy limit provides a more robust method for extracting them experimentally using a much wide range of data from the bottom of the one-dimensional band to the Fermi energy. The empirical model of the spectral edge mode complements the mobile impurity model to give a description of the excitations in proximity of the edge at arbitrary momenta in terms of only the low energy parameters and the bare electron mass. Within such a framework, for example, exponents of the spectral function are expressed explicitly in terms of only a few Luttinger parameters.

rate research

Read More

Almost strong edge-mode operators arising at the boundaries of certain interacting 1D symmetry protected topological phases with (Z_2) symmetry have infinite temperature lifetimes that are non-perturbatively long in the integrability breaking terms, making them promising as bits for quantum information processing. We extract the lifetime of these edge-mode operators for small system sizes as well as in the thermodynamic limit. For the latter, a Lanczos scheme is employed to map the operator dynamics to a one dimensional tight-binding model of a single particle in Krylov space. We find this model to be that of a spatially inhomogeneous Su-Schrieffer-Heeger model with a hopping amplitude that increases away from the boundary, and a dimerization that decreases away from the boundary. We associate this dimerized or staggered structure with the existence of the almost strong mode. Thus the short time dynamics of the almost strong mode is that of the edge-mode of the Su-Schrieffer-Heeger model, while the long time dynamics involves decay due to tunneling out of that mode, followed by chaotic operator spreading. We also show that competing scattering processes can lead to interference effects that can significantly enhance the lifetime.
The zero temperature localization of interacting electrons coupled to a two-dimensional quenched random potential, and constrained to move on a fluctuating one-dimensional string embedded in the disordered plane, is studied using a perturbative renormalization group approach. In the reference frame of the electrons the impurities are dynamical and their localizing effect is expected to decrease. We consider several models for the string dynamics and find that while the extent of the delocalized regime indeed grows with the degree of string fluctuations, the critical interaction strength, which determines the localization-delocalization transition for infinitesimal disorder,does not change unless the fluctuations are softer than those of a simple elastic string.
We study one-dimensional, interacting, gapped fermionic systems described by variants of the Peierls-Hubbard model and characterize their phases via a topological invariant constructed out of their Greens functions. We demonstrate that the existence of topologically protected, zero-energy states at the boundaries of these systems can be tied to the values of their topological invariant, just like when working with the conventional, noninteracting topological insulators. We use a combination of analytical methods and the numerical density matrix renormalization group method to calculate the values of the topological invariant throughout the phase diagrams of these systems, thus deducing when topologically protected boundary states are present. We are also able to study topological states in spin systems because, deep in the Mott insulating regime, these fermionic systems reduce to spin chains. In this way, we associate the zero-energy states at the end of an antiferromagnetic spin-one Heisenberg chain with the topological invariant 2.
Extending our previous work, we explore the breathing mode---the [uniform] radial expansion and contraction of a spatially confined system. We study the breathing mode across the transition from the ideal quantum to the classical regime and confirm that it is not independent of the pair interaction strength (coupling parameter). We present the results of time-dependent Hartree-Fock simulations for 2 to 20 fermions with Coulomb interaction and show how the quantum breathing mode depends on the particle number. We validate the accuracy of our results, comparing them to exact Configuration Interaction results for up to 8 particles.
We propose to utilize the sub-system fidelity (SSF), defined by comparing a pair of reduced density matrices derived from the degenerate ground states, to identify and/or characterize symmetry protected topological (SPT) states in one-dimensional interacting many-body systems. The SSF tells whether two states are locally indistinguishable (LI) by measurements within a given sub-system. Starting from two polar states (states that could be distinguished on either edge), the other combinations of these states can be mapped onto a Bloch sphere. We prove that a pair of orthogonal states on the equator of the Bloch sphere are LI, independently of whether they are SPT states or cat states (symmetry-preserving states by linear combinations of states that break discrete symmetries). Armed with this theorem, we provide a scheme to construct zero-energy exitations that swap the LI states. We show that the zero mode can be located anywhere for cat states, but is localized near the edge for SPT states. We also show that the SPT states are LI in a finite fraction of the bulk (excluding the two edges), whereas the symmetry-breaking states are distinguishable. This can be used to pinpoint the transition from SPT states to the symmetry-breaking states.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا