No Arabic abstract
[Abridged] Ethylene oxide and its isomer acetaldehyde are important complex organic molecules because of their potential role in the formation of amino acids. Despite the fact that acetaldehyde is ubiquitous in the interstellar medium, ethylene oxide has not yet been detected in cold sources. We aim to understand the chemistry of the formation and loss of ethylene oxide in hot and cold interstellar objects (i) by including in a revised gas-grain network some recent experimental results on grain surfaces and (ii) by comparison with the chemical behaviour of its isomer, acetaldehyde. We test the code for the case of a hot core. The model allows us to predict the gaseous and solid ethylene oxide abundances during a cooling-down phase prior to star formation and during the subsequent warm-up phase. We can therefore predict at what temperatures ethylene oxide forms on grain surfaces and at what temperature it starts to desorb into the gas phase. The model reproduces the observed gaseous abundances of ethylene oxide and acetaldehyde towards high-mass star-forming regions. In addition, our results show that ethylene oxide may be present in outer and cooler regions of hot cores where its isomer has already been detected. Despite their different chemical structures, the chemistry of ethylene oxide is coupled to that of acetaldehyde, suggesting that acetaldehyde may be used as a tracer for ethylene oxide towards cold cores.
We present a theoretical study of CS line profiles in archetypal hot cores. We provide estimates of line fluxes from the CS(1-0) to the CS(15-14) transitions and present the temporal variation of these fluxes. We find that textit{i)} the CS(1-0) transition is a better tracer of the Envelope of the hot core whereas the higher-J CS lines trace the ultra-compact core; textit{ii)} the peak temperature of the CS transitions is a good indicator of the temperature inside the hot core; textit{iii)} in the Envelope, the older the hot core the stronger the self-absorption of CS; textit{iv)} the fractional abundance of CS is highest in the innermost parts of the ultra-compact core, confirming the CS molecule as one of the best tracers of very dense gas.
Electrochemical conversion of CO2 (CO2R) into fuels and chemicals can both reduce CO2 emissions and allow for clean manufacturing in the scenario of significant expansion of renewable power generation. However, large-scale process deployment is currently limited by unfavourable process economics resulting from significant up- and down-stream costs for obtaining pure CO2, separation of reaction products and increased logistical effort. We have discovered a method for economically viable recycling of waste CO2 that addresses these challenges. Our approach is based on integration of a CO2R unit into an existing manufacturing process: ethylene oxide (EO) production, which emits CO2 as a by-product. The standard EO process separates waste CO2 from gas stream, hence the substrate for electroreduction is available at an EO plant at no additional cost. CO2 can be converted into an ethylene-rich stream and recycled on-site back to the EO reactor, which uses ethylene as a raw material, and also the anode product (oxygen) can be simultaneously valorized for the EO production reaction. If powered by a renewable electricity source, the process will significantly (ca. 80%) reduce the CO2 emissions of an EO manufacturing plant. A sensitivity analysis shows that the recycling approach can be economically viable in the short term and that its payback time could be as low as 1-2 years in the regions with higher carbon taxes and/or with access to low-cost electricity sources.
In the study of high-mass star formation, hot cores are empirically defined stages where chemically rich emission is detected toward a massive YSO. It is unknown whether the physical origin of this emission is a disk, inner envelope, or outflow cavity wall and whether the hot core stage is common to all massive stars. We investigate the chemical make up of several hot molecular cores to determine physical and chemical structure. We use high spectral and spatial resolution Cycle 0 ALMA observations to determine how this stage fits into the formation sequence of a high mass star. We observed the G35.20-0.74N and G35.03+0.35 hot cores at 350 GHz. We analyzed spectra and maps from four continuum peaks (A, B1, B2 and B3) in G35.20, separated by 1000-2000 AU, and one continuum peak in G35.03. We made all possible line identifications across 8 GHz of spectral windows of molecular emission lines and determined column densities and temperatures for as many as 35 species assuming local thermodynamic equilibrium. In comparing the spectra of the four peaks, we find each has a distinct chemical composition expressed in over 400 different transitions. In G35.20, B1 and B2 contain oxygen- and sulfur-bearing organic and inorganic species but few nitrogen-bearing species whereas A and B3 are strong sources of O, S, and N-bearing species (especially those with the CN-bond). CH$_2$DCN is clearly detected in A and B3 with D/H ratios of 8 and 13$%$, respectively, but is much weaker at B1 and undetected at B2. No deuterated species are detected in G35.03, but similar molecular abundances to G35.20 were found in other species. We also find co-spatial emission of HNCO and NH$_2$CHO in both sources indicating a strong chemical link between the two species. The chemical segregation between N-bearing organic species and others in G35.20 suggests the presence of multiple protostars, surrounded by a disk or torus.
In the search for the building blocks of life, nitrogen-bearing molecules are of particular interest since nitrogen-containing bonds are essential for the linking of amino acids and ultimately the formation of larger biological structures. The elusive molecule methylamine (CH$_3$NH$_2$) is thought to be a key pre-biotic species but has so far only been securely detected in the giant molecular cloud Sgr B2. We identify CH$_3$NH$_2$ and other simple nitrogen-bearing species towards three hot cores in NGC 6334I. Column density ratios are derived in order to investigate the relevance of the individual species as precursors of biotic molecules. Observations obtained with ALMA were used to study transitions of CH$_3$NH$_2$, CH$_2$NH, NH$_2$CHO, and the $^{13}$C- and $^{15}$N-methyl cyanide (CH$_3$CN) isotopologues. Column densities are derived for each species assuming LTE and excitation temperatures in the range 220-340 K for CH$_3$NH$_2$, 70-110 K for the CH$_3$CN isotopologues, and 120-215 K for NH$_2$CHO and CH$_2$NH. We report the first detections of CH$_3$NH$_2$ towards NGC 6334I with column density ratios with respect to CH$_3$OH of 5.9$times$10$^{-3}$, 1.5$times$10$^{-3}$, and 5.4$times$10$^{-4}$ for the three hot cores MM1, MM2, and MM3, respectively. These values are slightly lower than the values derived for Sgr B2 but higher by more than order of magnitude as compared with the values derived for the low-mass protostar IRAS 16293-2422B. The detections of CH$_3$NH$_2$ in the hot cores of NGC 6334I hint that CH$_3$NH$_2$ is generally common in the interstellar medium, albeit high-sensitivity observations are essential for its detection. The good agreement between model predictions of CH$_3$NH$_2$ ratios and the observations towards NGC 6334I indicate a main formation pathway via radical recombination on grain surfaces.
We present high angular resolution observations (0.5x0.3) carried out with the Submillimeter Array (SMA) toward the AFGL2591 high-mass star forming region. Our SMA images reveal a clear chemical segregation within the AFGL2591 VLA 3 hot core, where different molecular species (Type I, II and III) appear distributed in three concentric shells. This is the first time that such a chemical segregation is ever reported at linear scales <3000 AU within a hot core. While Type I species (H2S and 13CS) peak at the AFGL2591 VLA 3 protostar, Type II molecules (HC3N, OCS, SO and SO2) show a double-peaked structure circumventing the continuum peak. Type III species, represented by CH3OH, form a ring-like structure surrounding the continuum emission. The excitation temperatures of SO2, HC3N and CH3OH (185+-11 K, 150+-20 K and 124+-12 K, respectively) show a temperature gradient within the AFGL2591 VLA 3 envelope, consistent with previous observations and modeling of the source. By combining the H2S, SO2 and CH3OH images, representative of the three concentric shells, we find that the global kinematics of the molecular gas follow Keplerian-like rotation around a 40 Mo-star. The chemical segregation observed toward AFGL2591 VLA 3 is explained by the combination of molecular UV photo-dissociation and a high-temperature (~1000 K) gas-phase chemistry within the low extinction innermost region in the AFGL2591 VLA 3 hot core.