Do you want to publish a course? Click here

CS Lines Profiles in Hot Cores

126   0   0.0 ( 0 )
 Added by Bayet Estelle
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a theoretical study of CS line profiles in archetypal hot cores. We provide estimates of line fluxes from the CS(1-0) to the CS(15-14) transitions and present the temporal variation of these fluxes. We find that textit{i)} the CS(1-0) transition is a better tracer of the Envelope of the hot core whereas the higher-J CS lines trace the ultra-compact core; textit{ii)} the peak temperature of the CS transitions is a good indicator of the temperature inside the hot core; textit{iii)} in the Envelope, the older the hot core the stronger the self-absorption of CS; textit{iv)} the fractional abundance of CS is highest in the innermost parts of the ultra-compact core, confirming the CS molecule as one of the best tracers of very dense gas.



rate research

Read More

The CS molecule is known to be absorbed onto dust in the cold and dense conditions, causing it to get significantly depleted in the central region of cores. This study is aimed to investigate the depletion of the CS molecule using the optically thin C$^{34}$S molecular line observations. We mapped five prestellar cores, L1544, L1552, L1689B, L694-2, and L1197 using two molecular lines, C$^{34}$S $(J=2-1)$ and N$_2$H$^+$ $(J=1-0)$ with the NRO 45-m telescope, doubling the number of cores where the CS depletion was probed using C$^{34}$S. In most of our targets, the distribution of C$^{34}$S emission shows features that suggest that the CS molecule is generally depleted in the center of the prestellar cores. The radial profile of the CS abundance with respect to H$_2$ directly measured from the CS emission and the Herschel dust emission indicates that the CS molecule is depleted by a factor of $sim$3 toward the central regions of the cores with respect to their outer regions. The degree of the depletion is found to be even more enhanced by an order of magnitude when the contaminating effect introduced by the presence of CS molecules in the surrounding envelope that lie along the line-of-sight is removed. Except for L1197 which is classified as relatively the least evolved core in our targets based on its observed physical parameters, we found that the remaining four prestellar cores are suffering from significant CS depletion at their central region regardless of the relative difference in their evolutionary status.
In the high-mass star-forming region G35.20-0.74N, small scale (about 800 AU) chemical segregation has been observed in which complex organic molecules containing the CN group are located in a small location. We aim to determine the physical origin of the large abundance difference (about 4 orders of magnitude) in complex cyanides within G35.20-0.74 B, and we explore variations in age, gas and dust temperature, and gas density. We performed gas-grain astrochemical modeling experiments with exponentially increasing (coupled) gas and dust temperature rising from 10 to 500 K at constant H$_2$ densities of 10$^7$, 10$^8$, and 10$^9$ cm$^{-3}$. We tested the effect of varying the initial ice composition, cosmic-ray ionization rate, warm-up time (over 50, 200, and 1000 kyr), and initial (10, 15, and 25 K) and final temperatures (300 and 500 K). Varying the initial ice compositions within the observed and expected ranges does not noticeably affect the modeled abundances indicating that the chemical make-up of hot cores is determined in the warm-up stage. Complex cyanides vinyl and ethyl cyanide (CH$_2$CHCN and C$_2$H$_5$CN, respectively) cannot be produced in abundances (versus H$_2$) greater than 5x10$^{-10}$ for CH$_2$CHCN and 2x10$^{-10}$ for C$_2$H$_5$CN with a fast warm-up time (52 kyr), while the lower limit for the observed abundance of C$_2$H$_5$CN toward source B3 is 3.4x10$^{-10}$. Complex cyanide abundances are reduced at higher initial temperatures and increased at higher cosmic-ray ionization rates. Reproducing the observed abundances toward G35.20-0.74 Core B3 requires a fast warm-up at a high cosmic-ray ionization rate (1x10$^{-16}$ s$^{-1}$) at a high gas density (>10$^9$ cm$^{-3}$). G35.20-0.74 source B3 only needs to be about 2000 years older than B1/B2 for the observed chemical difference to be present. (This abstract has been shortened)
Using the data products of the Chandra Galaxy Atlas (Kim et al. 2019a), we have investigated the radial profiles of the hot gas temperature in 60 early type galaxies. Considering the characteristic temperature and radius of the peak, dip, and break (when scaled by the gas temperature and virial radius of each galaxy), we propose a universal temperature profile of the hot halo in ETGs. In this scheme, the hot gas temperature peaks at RMAX = 35 +/- 25 kpc (or ~0.04 RVIR) and declines both inward and outward. The temperature dips (or breaks) at RMIN (or RBREAK) = 3 - 5 kpc (or ~0.006 RVIR). The mean slope between RMIN (RBREAK) and RMAX is 0.3 +/- 0.1. Allowing for selection effects and observational limits, we find that the universal temperature profile can describe the temperature profiles of 72% (possibly up to 82%) of our ETG sample. The remaining ETGs (18%) with irregular or monotonically declining profiles do not fit the universal profile and require another explanation. The temperature gradient inside RMIN (RBREAK) varies widely, indicating different degrees of additional heating at small radii. Investigating the nature of the hot core (HC with a negative gradient inside RMIN), we find that HC is most clearly visible in small galaxies. Searching for potential clues associated with stellar, AGN feedback, and gravitational heating, we find that HC may be related to recent star formation. But we see no clear evidence that AGN feedback and gravitational heating play any significant role for HC.
We mapped two molecular cloud cores in the Orion A cloud with the ALMA ACA 7-m Array and with the Nobeyama 45-m radio telescope. These cores have bright N$_2$D$^+$ emission in single-pointing observations with the Nobeyama 45-m radio telescope, have relatively high deuterium fraction, and are thought to be close to the onset of star formation. One is a star-forming core, and the other is starless. These cores are located along filaments observed in N$_2$H$^+$, and show narrow linewidths of 0.41 km s$^{-1}$ and 0.45 km s$^{-1}$ in N$_2$D$^+$, respectively, with the Nobeyama 45-m telescope. Both cores were detected with the ALMA ACA 7m Array in the continuum and molecular lines at Band 6. The starless core G211 shows clumpy structure with several sub-cores, which in turn show chemical differences. Also, the sub-cores in G211 have internal motions that are almost purely thermal. The starless sub-core G211D, in particular, shows a hint of the inverse P Cygni profile, suggesting infall motion. The star-forming core G210 shows an interesting spatial feature of two N$_2$D$^+$ peaks of similar intensity and radial velocity located symmetrically with respect to the single dust continuum peak. One interpretation is that the two N$_2$D$^+$ peaks represent an edge-on pseudo-disk. The CO outflow lobes, however, are not directed perpendicular to the line connecting both N$_2$D$^+$ peaks.
[Abridged] Ethylene oxide and its isomer acetaldehyde are important complex organic molecules because of their potential role in the formation of amino acids. Despite the fact that acetaldehyde is ubiquitous in the interstellar medium, ethylene oxide has not yet been detected in cold sources. We aim to understand the chemistry of the formation and loss of ethylene oxide in hot and cold interstellar objects (i) by including in a revised gas-grain network some recent experimental results on grain surfaces and (ii) by comparison with the chemical behaviour of its isomer, acetaldehyde. We test the code for the case of a hot core. The model allows us to predict the gaseous and solid ethylene oxide abundances during a cooling-down phase prior to star formation and during the subsequent warm-up phase. We can therefore predict at what temperatures ethylene oxide forms on grain surfaces and at what temperature it starts to desorb into the gas phase. The model reproduces the observed gaseous abundances of ethylene oxide and acetaldehyde towards high-mass star-forming regions. In addition, our results show that ethylene oxide may be present in outer and cooler regions of hot cores where its isomer has already been detected. Despite their different chemical structures, the chemistry of ethylene oxide is coupled to that of acetaldehyde, suggesting that acetaldehyde may be used as a tracer for ethylene oxide towards cold cores.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا