Do you want to publish a course? Click here

MOA-2013-BLG-220Lb: Massive Planetary Companion to Galactic-Disk Host

90   0   0.0 ( 0 )
 Added by Cheongho Han
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the discovery of MOA-2013-BLG-220Lb, which has a super-Jupiter mass ratio $q=3.01pm 0.02times 10^{-3}$ relative to its host. The proper motion, $mu=12.5pm 1, {rm mas},{rm yr}^{-1}$, is one of the highest for microlensing planets yet discovered, implying that it will be possible to separately resolve the host within $sim 7$ years. Two separate lines of evidence imply that the planet and host are in the Galactic disk. The planet could have been detected and characterized purely with follow-up data, which has important implications for microlensing surveys, both current and into the LSST era.



rate research

Read More

We present the analysis of high-resolution images of MOA-2013-BLG-220, taken with the Keck adaptive optics system 6 years after the initial observation, identifying the lens as a solar-type star hosting a super-Jupiter mass planet. The masses of planets and host-stars discovered by microlensing are often not determined from light curve data, while the star-planet mass-ratio and projected separation in units of Einstein ring radius are well measured. High-resolution follow-up observations after the lensing event is complete can resolve the source and lens. This allows direct measurements of flux, and the amplitude and direction of proper motion, giving strong constraints on the system parameters. Due to the high relative proper motion, $mu_{rm rel,Geo} = 12.62pm0.11$ mas/yr, the source and lens were resolved in 2019, with a separation of $77.1pm0.5$ mas. Thus, we constrain the lens flux to $K_{rm Keck,lens}= 17.92pm0.02$. By combining constraints from the model and Keck flux, we find the lens mass to be $M_L = 0.88pm0.05 M_odot$ at $D_L = 6.72pm0.59$ kpc. With a mass-ratio of $q=(3.00pm0.03)times10^{-3}$ the planets mass is determined to be $M_P = 2.74pm0.17 M_{J}$ at a separation of $r_perp = 3.03pm0.27$ AU. The lens mass is much higher than the prediction made by the Bayesian analysis that assumes all stars have an equal probability to host a planet of the measured mass ratio, and suggests that planets with mass ratios of a few 10$^{-3}$ are more common orbiting massive stars. This demonstrates the importance of high-resolution follow-up observations for testing theories like these.
91 - P. Rota , Y. Hirao , V. Bozza 2021
MOA-2006-BLG-074 was selected as one of the most promising planetary candidates in a retrospective analysis of the MOA collaboration: its asymmetric high-magnification peak can be perfectly explained by a source passing across a central caustic deformed by a small planet. However, after a detailed analysis of the residuals, we have realized that a single lens and a source orbiting with a faint companion provides a more satisfactory explanation for all the observed deviations from a Paczynski curve and the only physically acceptable interpretation. Indeed the orbital motion of the source is constrained enough to allow a very good characterization of the binary source from the microlensing light curve. The case of MOA-2006-BLG-074 suggests that the so-called xallarap effect must be taken seriously in any attempts to obtain accurate planetary demographics from microlensing surveys.
We report the discovery and the analysis of the short timescale binary-lens microlensing event, MOA-2015-BLG-337. The lens system could be a planetary system with a very low mass host, around the brown dwarf/planetary mass boundary, or a brown dwarf binary. We found two competing models that explain the observed light curves with companion/host mass ratios of q~0.01 and ~0.17, respectively. From the measurement of finite source effects in the best-fit planetary model, we find a relatively small angular Einstein radius of theta_E ~ 0.03 mas which favors a low mass lens. We conduct a Bayesian analysis to obtain the probability distribution of the lens properties. The results for the planetary models strongly depend on the minimum mass, M_min, in the assumed mass function. In summary, there are two solutions of the lens system: (1) a brown dwarf/planetary mass boundary object orbited by a super-Neptune (the planetary model with M_min=0.001 M_sun) and (2) a brown dwarf binary (the binary model). If the planetary models is correct, this system can be one of a new class of planetary system, having a low host mass and also a planetary mass ratio (q <0.03) between the host and its companion. The discovery of the event is important for the study of planetary formation in very low mass objects. In addition, it is important to consider all viable solutions in these kinds of ambiguous events in order for the future comprehensive statistical analyses of planetary/binary microlensing events.
We report the discovery of a planetary-mass companion, HD 106906 b, with the new Magellan Adaptive Optics (MagAO) + Clio2 system. The companion is detected with Clio2 in three bands: $J$, $K_S$, and $L^prime$, and lies at a projected separation of 7.1 (650 AU). It is confirmed to be comoving with its $13pm2$ Myr-old F5 host using Hubble Space Telescope/Advanced Camera for Surveys astrometry over a time baseline of 8.3 yr. DUSTY and COND evolutionary models predict the companions luminosity corresponds to a mass of $11pm2 M_{Jup}$, making it one of the most widely separated planetary-mass companions known. We classify its Magellan/Folded-Port InfraRed Echellette $J/H/K$ spectrum as L$2.5pm1$; the triangular $H$-band morphology suggests an intermediate surface gravity. HD 106906 A, a pre-main-sequence Lower Centaurus Crux member, was initially targeted because it hosts a massive debris disk detected via infrared excess emission in unresolved Spitzer imaging and spectroscopy. The disk emission is best fit by a single component at 95 K, corresponding to an inner edge of 15-20 AU and an outer edge of up to 120 AU. If the companion is on an eccentric ($e>0.65$) orbit, it could be interacting with the outer edge of the disk. Close-in, planet-like formation followed by scattering to the current location would likely disrupt the disk and is disfavored. Furthermore, we find no additional companions, though we could detect similar-mass objects at projected separations $>35$ AU. In situ formation in a binary-star-like process is more probable, although the companion-to-primary mass ratio, at $<1%$, is unusually small.
161 - Julia Janczak 2009
We report the detection of sub-Saturn-mass planet MOA-2008-BLG-310Lb and argue that it is the strongest candidate yet for a bulge planet. Deviations from the single-lens fit are smoothed out by finite-source effects and so are not immediately apparent from the light curve. Nevertheless, we find that a model in which the primary has a planetary companion is favored over the single-lens model by Deltachi^2 ~ 880 for an additional three degrees of freedom. Detailed analysis yields a planet/star mass ratio q=(3.3+/-0.3)x10^{-4} and an angular separation between the planet and star within 10% of the angular Einstein radius. The small angular Einstein radius, theta_E=0.155+/-0.011 mas, constrains the distance to the lens to be D_L>6.0 kpc if it is a star (M_L>0.08 M_sun). This is the only microlensing exoplanet host discovered so far that must be in the bulge if it is a star. By analyzing VLT NACO adaptive optics images taken near the baseline of the event, we detect additional blended light that is aligned to within 130 mas of the lensed source. This light is plausibly from the lens, but could also be due to a companion to lens or source, or possibly an unassociated star. If the blended light is indeed due to the lens, we can estimate the mass of the lens, M_L=0.67+/-0.14 M_sun, planet mass m=74+/-17 M_Earth, and projected separation between the planet and host, 1.25+/-0.10 AU, putting it right on the snow line. If not, then the planet has lower mass, is closer to its host and is colder. To distinguish among these possibilities on reasonable timescales would require obtaining Hubble Space Telescope images almost immediately, before the source-lens relative motion of mu=5 mas yr^{-1} causes them to separate substantially.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا